A DFT Study the Electronic, Optical and Thermal Properties of XTe (X= Pb, Cd, Nb) for optoelectronic device Applications
DOI:
https://doi.org/10.47577/biochemmed.v9i.11463Keywords:
Telluride (Te) based compounds, Electronic, Structural, Optical, optoelectronic, CASTEP softwareAbstract
A First-principles based study to investigate the different properties of telluride (Te) based materials XTe (X= Pb, Cd, Nb) such as structural, electronic, optical, and thermal properties. The bandgap of XTe (X= Pb, Cd, Nb) was originate significantly decrement from 1.50 eV to 0.00 eV. Under the First-principles exploration Pb, Cd, and Nb are appropriate periodic elements for bandgap decrement in XTe materials. The bandgap nature was obtaining direct furthermore bandgap show that materials are proficient semiconductors. Niobium (Nb) is more advantageous than Pb and Cd. By substituting of X= Pb, Cd, Nb at the corner sites in XTe (X= Pb, Cd, Nb) additional gamma sites were participated in the electronic energy band gap (Eg). It is also examined that optical peaks shifted toward larger energy due to decrement in the band gap. Thermal impact on macroscopic properties of XTe (X= Pb, Cd, Nb) compounds are predicted using the quasi-harmonic Debye model. The variations of the enthalpy (U-U), entropy (S-S), heat capacity, Debye temperature, and free energy with temperature function are obtained successfully. Moreover, small band-gap semiconducting Telluride (Te) based materials reveal low thermal conductivities at a prominent temperature which is curious for simple cubic structured materials. These compounds for electrical, optical, and thermal properties have made them practical novel materials for optoelectronic device applications.
References
M. C. Shaughnessy, N. C. Bartelt, J. A. Zimmerman, and J. D. Sugar, “Energetics and diffusion of gold in bismuth telluride-based thermoelectric compounds,” J. Appl. Phys., vol. 115, no. 6, 2014, doi: 10.1063/1.4865735.
M. H. Jameel et al., “A Comparative DFT Study of Bandgap Engineering and Tuning of Structural, Electronic, and Optical Properties of 2D WS2, PtS2, and MoS2 between WSe2, PtSe2, and MoSe2 Materials for Photocatalytic and Solar Cell Applications,” J. Inorg. Organomet. Polym. Mater., no. August, 2023, doi: 10.1007/s10904-023-02828-0.
Turki Jalil, A., Emad Al Qurabiy, H., Hussain Dilfy, S., Oudah Meza, S., Aravindhan, S., M Kadhim, M., & M Aljeboree, A. (2021). CuO/ZrO2 nanocomposites: facile synthesis, characterization and photocatalytic degradation of tetracycline antibiotic. Journal of Nanostructures, 11(2), 333-346
Hasan Jabbar, A., Oudah Mezan, S., Alameri, A. A., Prakaash, A. S., Mohammed Baqir Al-Dhalimy, A., & Younes, A. (2023). Fe3O4@ Diamine-CuI Nanocomposite: A Novel and Highly Reusable Nanomagnetic Catalyst for Ecofriendly Synthesis of Triaryl Imidazoles. Polycyclic Aromatic Compounds, 1-17.
Mezan, S. O., Jabbar, A. H., Jabbare, A. T., Abs, S. M. A., Roslan, M. S., & Agam, M. A. (2022, October). Synthesis and enhancement of morphological and structural properties of zinc sulphide thin films nanoparticle for solar cell application. In AIP Conference Proceedings (Vol. 2398, No. 1). AIP Publishing.
M. H. Jameel et al., “Investigation of structural, electronic and optical properties of two-dimensional MoS2-doped-V2O5 composites for photocatalytic application: a density functional theory study,” Royal Society open science, 10(7),2023, 230503. https://doi.org/10.1098/rsos.230503.
R. E. Taylor et al., “A combined NMR and DFT study of narrow gap semiconductors: The case of PbTe,” J. Phys. Chem. C, vol. 117, no. 17, pp. 8959–8967, 2013, doi: 10.1021/jp3101877.
Y. Gelbstein, Z. Dashevsky, and M. P. Dariel, “High performance n-type PbTe-based materials for thermoelectric applications,” Phys. B Condens. Matter, vol. 363, no. 1–4, pp. 196–205, 2005, doi: 10.1016/j.physb.2005.03.022.
M. Serhan et al., Total iron measurement in human serum with a smartphone, vol. 2019-Novem. 2019.
M. H. Jameel et al., “A comparative DFT study of electronic and optical properties of Pb/Cd-doped LaVO4 and Pb/Cd-LuVO4 for electronic device applications,” Comput. Condens. Matter, vol. 34, no. November 2022, p. e00773, 2023, doi: 10.1016/j.cocom.2022.e00773.
S. El Oualid et al., “Innovative design of bismuth-telluride-based thermoelectric micro-generators with high output power,” Energy Environ. Sci., vol. 13, no. 10, pp. 3579–3591, 2020, doi: 10.1039/d0ee02579h.
B. K. Al-Rawi, S. M. Hameed, and M. A. M. Alsaadi, “Simulation of electronic structure and some properties of CdTe crystals using DFT,” Mater. Sci. Forum, vol. 1021, no. April 2021, pp. 1–10, 2021, doi: 10.4028/www.scientific.net/MSF.1021.1.
M. H. Jameel, A. Rehman, M. S. bin Roslan, and M. A. Bin Agam, “To investigate the structural, electronic, optical and magnetic properties of Sr-doped KNbO3 for perovskite solar cell applications: A DFT study,” Phys. Scr., vol. 98, no. 5, 2023, doi: 10.1088/1402-4896/acc6fb.
J. P. Heremans et al., “Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states,” Science (80-. )., vol. 321, no. 5888, pp. 554–557, 2008, doi: 10.1126/science.1159725.
F. M. Mohammed, F. I. Rashid, and shahad A. Shaaban, “Electronic Configuration and Charge Transfer Study in (CdTe),” Int. J. Electron. Commun. Eng., vol. 5, no. 5, pp. 1–5, 2018, doi: 10.14445/23488549/ijece-v5i5p101.
M. Hasnain, J. Muhammad, R. Mohd, and A. Bin, “Effect of external static pressure on structural , electronic , and optical properties of 2 ‑ D hetero ‑ junction MoS 2 for a photocatalytic applications : A DFT study,” Opt. Quantum Electron., vol. 2, pp. 1–14, 2023, doi: 10.1007/s11082-023-04853-2.
O. Cojocaru-Mirédin et al., “Role of Nanostructuring and Microstructuring in Silver Antimony Telluride Compounds for Thermoelectric Applications,” ACS Appl. Mater. Interfaces, vol. 9, no. 17, pp. 14779–14790, 2017, doi: 10.1021/acsami.7b00689.
M. H. Jameel et al., “First principal calculations of electronic, optical and magnetic properties of cubic K1-xYxNbO3(Y = Fe, Ni),” Phys. Scr., vol. 96, no. 12, 2021, doi: 10.1088/1402-4896/ac198d.
D. I. Bilc, S. D. Mahanti, and M. G. Kanatzidis, “Electronic transport properties of PbTe and AgPbm SbTe 2+m systems,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 74, no. 12, 2006, doi: 10.1103/PhysRevB.74.125202.
A. H. Romero, E. K. U. Gross, M. J. Verstraete, and O. Hellman, “Thermal conductivity in PbTe from first principles,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 91, no. 21, 2015, doi: 10.1103/PhysRevB.91.214310.
Altajer, A. H., Efendi, S., Jabbar, A. H., Oudah Mezan, S., Thangavelu, L., M Kadhim, M., & F Alkai, A. M. (2021). Novel carbon quantum dots: Green and facile synthesis, characterization and its application in on-off-on fluorescent probes for ascorbic acid. Journal of Nanostructures, 11(2), 236-242.
G. J. Snyder, T. Caillat, and J. P. Fleurial, “Thermoelectric properties of the incommensurate layered semiconductor GexNbTe2,” J. Mater. Res., vol. 15, no. 12, pp. 2789–2793, 2000, doi: 10.1557/JMR.2000.0398.
Saleh, R. O., Mansouri, S., Hammoud, A., Rodrigues, P., Mezan, S. O., Deorari, M., & Shakir, M. N. (2023). Dual-mode colorimetric and fluorescence biosensors for the detection of foodborne bacteria. Clinica Chimica Acta, 117741..
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Mohammed Zorah
This work is licensed under a Creative Commons Attribution 4.0 International License.