Structural, Optical and Thermal Properties of (PEG/PAA:MnO2) Nano Composites

Authors

  • Areej Ahmed Mohammed Tikrit University, College of Education, Physics Department,Iraq.
  • Adnan Raad Ahmed Tikrit University, College of Education, Physics Department,Iraq.
  • Muhammad Hameed Al-Timimi University of Diyala , College of Sciences , Physics Department,Iraq.

DOI:

https://doi.org/10.47577/biochemmed.v3i2.7116

Keywords:

PAA, PEG, MnO2, Structural, Optical, Thermal Properties

Abstract

In this work using manganese chloride and ammonia hydroxide in an aqueous solution as starting material to synthesize MnO2 nanoparticles by precipitation method The structural and optical and thermal properties of PEG PAA MnO2 Nano Composites films were investigated The PEG PAA polymeric blend films were doped with different ratios of MnO2 nanoparticles 0 1 3 and 5 using a casting method of 25 1 mm The obtained results demonstrated that the optical transmittance at the wavelengths between 200 1100 nm The optical properties of the films were affected by the MnO2 ratio The Energy gap of doped films decreased from 5 32 eV to 4 92 eV by increasing the doping MnO2 ratios The thermal conductivity coefficient K increases when adding MnO2 nanoparticles to the polymeric mixture PAA PEG.

fig1.jpg

References

[Rasheed, H. S. (2019). he Effect of Adding PAA on the Physical Properties of PEG. Annals of the University of Craiova: Physics AUC, 29, 36-44.

]2[Myung, D., Waters, D., Wiseman, M., Duhamel, P. E., Noolandi, J., Ta, C. N., & Frank, C. W. (2008). Progress in the development of interpenetrating polymer network hydrogels. Polymers for advanced technologies, 19(6), 647-657.

]3[Nguyen, M. K., & Lee, D. S. (2010). Bioadhesive PAA-PEG-PAA triblock copolymer hydrogels for drug delivery in oral cavity. Macromolecular Research, 18(3), 284-288.

]4[Liu, Z., Tang, B., & Zhang, S. (2020). Novel network structural PEG/PAA/SiO2 composite phase change materials with strong shape stability for storing thermal energy. Solar Energy Materials and Solar Cells, 216, 110678.

]5[Sill, K. N., Sullivan, B., Carie, A., & Semple, J. E. (2017). Synthesis and Characterization of Micelle-Forming PEG-Poly (Amino Acid) copolymers with iron-hydroxamate cross-linkable blocks for encapsulation and release of hydrophobic drugs. Biomacromolecules, 18(6), 1874-1884.

]6 [Cui, M., & Lee, P. S. (2016). Solid polymer electrolyte with high ionic conductivity via layer-by-layer deposition. Chemistry of Materials, 28(9), 2934-2940.

]7[Shivashankar, M., & Mandal, B. K. (2012). A review on interpenetrating polymer network. Int. J. Phram. Phram. Sci, 4(5), 1-7.

Al-Zanganawee, J., Al-Timimi, M., Pantazi, A., Brincoveanu, O., Moise, C., Mesterca, R., ... & Enachescu, M. (2016). Morphological and optical properties of functionalized SWCNTs: P3OT nanocomposite thin films, prepared by spincoating. Journal of Ovonic Research, 12(4), 201-207.

Haoran, Y., Lifang, D., Tao, L., & Yong, C. (2014). Hydrothermal synthesis of nanostructured manganese oxide as cathodic catalyst in a microbial fuel cell fed with leachate. The Scientific World Journal, 2014.

Akbari, S., Mehdi, M., & Foroughi, M. (2018). Solvent-free synthesis and characterization of MnO2 nanostructures and investigation of optical properties. J Nanomed Nanotechnol, 9(498), 2.

Shaker, K. S., & AbdAlsalm, A. H. (2018). Synthesis and characterization nano structure of MnO2 via chemical method. Engineering and Technology Journal, 36(9 Part A).

]12[ Sahai, A., & Goswami, N. (2014). Structural and vibrational properties of ZnO nanoparticles synthesized by the chemical precipitation method. Physica E: Low-dimensional Systems and Nanostructures, 58, 130-137.

]13[ Dutta, S., & Ganguly, B. N. (2012). Characterization of ZnO nanoparticles grown in presence of Folic acid template. Journal of nanobiotechnology, 10(1), 1-10.

]14[ Abdullah, M. Z., Al-Timimi, M. H., Albanda, W. H., Dumitru, M., Balan, A. E., Ceaus, C., ... & Stamatin, I. (2019). STRUCTURAL AND ELECTROCHEMICAL PROPERTIES OF P3-Na0. 67Mn0. 3Co0. 7O2 NANOSTRUCTURES PREPARED BY CITRIC-UREA SELFCOMBUSTION ROUTE AS CATHODE FOR SODIUM ION BATTERY. DIGEST JOURNAL OF NANOMATERIALS AND BIOSTRUCTURES, 14(4), 1179-1193.

]15[ Moussa, S., Namouchi, F., & Guermazi, H. (2015). Elaboration, structural and optical investigations of ZnO/epoxy nanocomposites. The European Physical Journal Plus, 130(7), 1-9.

]16[ Yuan, S., Tang, Q., Hu, B., Ma, C., Duan, J., & He, B. (2014). Efficient quasi-solid-state dyesensitized solar cells from graphene incorporated conducting gel electrolytes. Journal of Materials Chemistry A, 2(8), 2814-2821.

]17[ Li, R., Wu, Y., Bai, Z., Guo, J., & Chen, X. (2020). Effect of molecular weight of polyethylene glycol on crystallization behaviors, thermal properties and tensile performance of polylactic acid stereocomplexes. RSC Advances, 10(69), 42120-42127.

]18[Nam, J., Kim, E., KK, R., Kim, Y., & Kim, T. H. (2020). A conductive self healing polymeric binder using hydrogen bonding for Si anodes in lithium ion batteries. Scientific reports, 10(1), 1-12.

]19[ Hashim, A., & Habeeb, M. A. (2019). Synthesis and characterization of polymer blend-CoFe2O4 nanoparticles as a humidity sensors for different temperatures. Transactions on Electrical and Electronic Materials, 20(2), 107-112.

Agool, I. R., Kadhim, K. J., & Hashim, A. (2017). Fabrication of new nanocompositesPVA-PEG-PVP) blend-zirconium oxide nanoparticles) for humidity sensors. International Journal of Plastics Technology, 21(2), 397-403.

Sangawar, V., & Golchha, M. (2013). Evolution of the optical properties of polystyrene thin films filled with zinc oxide nanoparticles. International Journal of Scientific & Engineering Research, 4(6), 2700-2705.

Hashim, A., & Hadi, Q. (2018). Structural, electrical and optical properties of (biopolymer blend/titanium carbide) nanocomposites for low cost humidity sensors. Journal of Materials Science: Materials in Electronics, 29(13), 11598-11604.

Wang, B., Ma, R., Liu, G., Liu, X., Gao, Y., Shen, J., ... & Shi, L. (2010). Effect of Coordination on the Glucose-Responsiveness of PEG-b-(PAA-co-PAAPBA) Micelles. Macromolecular rapid communications, 31(18), 1628-1634.

Hashim, A., Agool, I. R., & Kadhim, K. J. (2018). Novel of (polymer blend-Fe3O4) magnetic nanocomposites: preparation and characterization for thermal energy storage and release, gamma ray shielding, antibacterial activity and humidity sensors applications. Journal of Materials Science: Materials in Electronics, 29(12), 10369-10394.

Lee,S.H., & Ohkita, T.(2003).Mechanical and thermal flow properties of wood flour-biodegradable polymer composites. Journal of applied polymer science,90(7),1900-1905.

Salman, S. A., Abdu-allah, M. H., & Bakr, N. A. (2014). Optical characterization of red methyl doped poly (vinyl alcohol) films. International Journal of Engineering and Technical Research, 2(4), 126-128.

]27[ Hashim, A., & Hadi, Q. (2018). Synthesis of novel (polymer blendceramics) nanocomposites: structural, optical and electrical properties for humidity sensors. Journal of Inorganic and Organometallic Polymers and Materials, 28(4), 1394-1401.

]28[ W.Callister, (1994), "Material Science & Engineering, An Introduction", Third Edition, John wiley & Sons Inc.

Childs, G. E., Ericks, L. J., & Powell, R. L. (1973). Thermal conductivity of solids at room temperature and below: A review and compilation of the literature.

Downloads

Published

2022-07-26

How to Cite

Mohammed, A. A., Ahmed, A. R., & Al-Timimi, M. H. (2022). Structural, Optical and Thermal Properties of (PEG/PAA:MnO2) Nano Composites. Technium BioChemMed, 3(2), 107–119. https://doi.org/10.47577/biochemmed.v3i2.7116