The role of Big Data Analytics in Financial Decision-Making and Strategic Accounting
DOI:
https://doi.org/10.47577/business.v10i.11877Abstract
This paper examines the transformative impact of big data analytics on the accounting profession, focusing on its application in financial forecasting, risk management, fraud detection, and strategic decision-making. By utilizing advanced tools such as Hadoop, Apache Spark, and machine learning algorithms, organizations can process vast and diverse datasets in real-time, generating actionable insights that enhance operational efficiency and competitive advantage. The study highlights key benefits, including improved financial forecasting accuracy, enhanced fraud detection capabilities, and more agile resource allocation. It also addresses the challenges associated with data integration, quality, and privacy, emphasizing the need for robust governance and ethical frameworks. Furthermore, the evolving role of accountants in a data-driven landscape is explored, underscoring the importance of data literacy and interdisciplinary collaboration. Ultimately, the integration of big data analytics into accounting processes not only optimizes financial operations but also positions the profession as a strategic driver of organizational success.
References
Halkiopoulos, C., Papadopoulos, A., Stamatiou, Y. C., Theodorakopoulos, L., & Vlachos, V. (2024). A Digital Service for Citizens: Multi-Parameter Optimization Model for Cost-Benefit Analysis of Cybercrime and Cyberdefense. Emerging Science Journal, 8(4), 1320-1344.
Theodorakopoulos, L., Theodoropoulou, A., & Stamatiou, Y. (2024). A State-of-the-Art Review in Big Data Management Engineering: Real-Life Case Studies, Challenges, and Future Research Directions. Eng, 5(3), 1266-1297.
Antonopoulou, H., Theodorakopoulos, L., Halkiopoulos, C., & Mamalougkou, V. (2023). Utilizing machine learning to reassess the predictability of bank stocks. Emerging Science Journal, 7(3), 724-732.
Mencl, V. (1998). Component definition language. Dep. of SW Engineering, Charles University, Prague.
Foroudi, P., Melewar, T. C., & Gupta, S. (2017). Corporate logo: History, definition, and components. International Studies of Management & Organization, 47(2), 176-196.
Casassa, E. F., & Eisenberg, H. (1960). On the Definition of Components in Solutions Containing Charged Macromolecular Species1. The Journal of Physical Chemistry, 64(6), 753-756.
Kanter, J. (1989). Clinical case management: Definition, principles, components. Psychiatric Services, 40(4), 361-368.
Saboori, H., Mohammadi, M., & Taghe, R. (2011, March). Virtual power plant (VPP), definition, concept, components and types. In 2011 Asia-Pacific power and energy engineering conference (pp. 1-4). IEEE.
Helmer, R., Yassine, A., & Meier, C. (2010). Systematic module and interface definition using component design structure matrix. Journal of Engineering Design, 21(6), 647-675.
Vărzaru, A. A. (2022). Assessing digital transformation of cost accounting tools in healthcare. International journal of environmental research and public health, 19(23), 15572.
Emir, M., & Henry, J. (2024). Empowering Businesses: the Impact of Digital Accounting Tools (No. 12111). EasyChair.
Kravchenko, I. (2022). Implementation of Digital Economy Tools in Statistical Analysis, Accounting and Audit. Oblik i finansi, 97, 12-20.
Theodorakopoulos, L., Thanasas, G., & Halkiopoulos, C. (2024). Implications of Big Data in Accounting: Challenges and Opportunities. Emerging Science Journal, 8(3), 1201-1214.
Karras, A., Giannaros, A., Theodorakopoulos, L., Krimpas, G. A., Kalogeratos, G., Karras, C., & Sioutas, S. (2023). FLIBD: A federated learning-based IoT big data management approach for privacy-preserving over Apache Spark with FATE. Electronics, 12(22), 4633.
Thanasas, G. L., Theodorakopoulos, L., & Lampropoulos, S. (2022). A Big Data Analysis with Machine Learning techniques in Accounting dataset from the Greek banking system. European Journal of Accounting, Auditing and Finance Research.
Karras, C., Karras, A., Theodorakopoulos, L., Giannoukou, I., & Sioutas, S. (2022, August). Expanding queries with maximum likelihood estimators and language models. In The International Conference on Innovations in Computing Research (pp. 201-213). Cham: Springer International Publishing.
Theodorakopoulos, L., Antonopoulou, H., Mamalougou, V., & Giotopoulos, K. (2022). The drivers of volume volatility: A big data analysis based on economic uncertainty measures for the Greek banking system. Available at SSRN 4306619.
Antonopoulou, H., Mamalougou, V., & Theodorakopoulos, L. (2022). The role of economic policy uncertainty in predicting stock return volatility in the banking industry: A big data analysis. Emerging Science Journal, 6(3), 569-577.
Vasilopoulos, C., Theodorakopoulos, L., & Giotopoulos, K. (2023). Big Data and Consumer Behavior: The Power and Pitfalls of Analytics in the Digital Age. Technium Soc. Sci. J., 45, 469.Becken, S. (2019). Virtual reality and tourism: An environmental sustainability perspective. Journal of Sustainable Tourism, 27(4), 551-566.
Theodorakopoulos, L., Theodoropoulou, A., & Halkiopoulos, C. (2024). Enhancing Decentralized Decision-Making with Big Data and Blockchain Technology: A Comprehensive Review. Applied Sciences, 14(16), 7007.
Vasilopoulos, C., Theodorakopoulos, L., & Giotopoulos, K. (2023). The Promise and Peril of Big Data in Driving Consumer Engagement. Technium Soc. Sci. J., 45, 489.
Karras, C., Theodorakopoulos, L., Karras, A., & Krimpas, G. A. (2024). Efficient Algorithms for Range Mode Queries in the Big Data Era. Information, 15(8), 450.
Vasilopoulou, C., Theodorakopoulos, L., & Giotopoulos, K. (2023). Big Data Analytics: A Catalyst for Digital Transformation in e-Government. Technium Social Sciences Journal, 45, 449-459.
Igoumenakis, G., Theodoropoulou, A., & Halkiopoulos, C. (2023, August). Tourism and Developing Countries. Conditions and Prospects for Tourism Development. In International Conference of the International Association of Cultural and Digital Tourism (pp. 721-748). Cham: Springer Nature Switzerland.
Halkiopoulos, C., Igoumenakis, G., & Theodoropoulou, A. (2023, August). Evaluation of Hotel Services Utilizing Digital Marketing Strategies in Less Developed Countries Within the Hospitality Industry. In International Conference of the International Association of Cultural and Digital Tourism (pp. 323-346). Cham: Springer Nature Switzerland.
Mireslami, S., Rakai, L., Far, B. H., & Wang, M. (2017). Simultaneous cost and QoS optimization for cloud resource allocation. IEEE Transactions on Network and Service Management, 14(3), 676-689.
Hegazy, T. (1999). Optimization of resource allocation and leveling using genetic algorithms. Journal of construction engineering and management, 125(3), 167-175.
Dehnokhalaji, A., Ghiyasi, M., & Korhonen, P. (2017). Resource allocation based on cost efficiency. Journal of the Operational Research Society, 68(10), 1279-1289.
Schulte, S., Schuller, D., Hoenisch, P., Lampe, U., Dustdar, S., & Steinmetz, R. (2013). Cost-driven optimization of cloud resource allocation for elastic processes. International Journal of Cloud Computing, 1(2), 1-14.
Provost, F., & Fawcett, T. (2013). Data science and its relationship to big data and data-driven decision making. Big data, 1(1), 51-59.
Bousdekis, A., Lepenioti, K., Apostolou, D., & Mentzas, G. (2021). A review of data-driven decision-making methods for industry 4.0 maintenance applications. Electronics, 10(7), 828.
Mandinach, E. B., Honey, M., & Light, D. (2006, April). A theoretical framework for data-driven decision making. In annual meeting of the American Educational Research Association, San Francisco, CA (pp. 39-52).
Diván, M. J. (2017, December). Data-driven decision making. In 2017 international conference on Infocom technologies and unmanned systems (trends and future directions)(ICTUS) (pp. 50-56). IEEE.
Bertsimas, D., & Kallus, N. (2020). From predictive to prescriptive analytics. Management Science, 66(3), 1025-1044.
Deka, G. C. (2014). Big data predictive and prescriptive analytics. In Handbook of research on cloud infrastructures for Big Data analytics (pp. 370-391). IGI Global.
Lepenioti, K., Bousdekis, A., Apostolou, D., & Mentzas, G. (2020). Prescriptive analytics: Literature review and research challenges. International Journal of Information Management, 50, 57-70.
Soltanpoor, R., & Sellis, T. (2016). Prescriptive analytics for big data. In Databases Theory and Applications: 27th Australasian Database Conference, ADC 2016, Sydney, NSW, September 28-29, 2016, Proceedings 27 (pp. 245-256). Springer International Publishing.
Peralta, V. (2006). Data quality evaluation in data integration systems (Doctoral dissertation, Université de Versailles-Saint Quentin en Yvelines; Université de la République d'Uruguay).
Akoka, J., Berti-Equille, L., Boucelma, O., Bouzeghoub, M., Comyn-Wattiau, I., Cosquer, M., ... & Sisaid-Cherfi, S. (2007, June). A framework for quality evaluation in data integration systems. In International Conference on Enterprise Information Systems (Vol. 2, pp. 170-175). SCITEPRESS.
Lapatas, V., Stefanidakis, M., Jimenez, R. C., Via, A., & Schneider, M. V. (2015). Data integration in biological research: an overview. Journal of Biological Research-Thessaloniki, 22, 1-16.
Batista, M. D. C. M., & Salgado, A. C. (2007, September). Information Quality Measurement in Data Integration Schemas. In QDB (pp. 61-72).
Sarathy, R., & Robertson, C. J. (2003). Strategic and ethical considerations in managing digital privacy. Journal of Business ethics, 46, 111-126.
Pina, E., Ramos, J., Jorge, H., Váz, P., Silva, J., Wanzeller, C., ... & Martins, P. (2024). Data Privacy and Ethical Considerations in Database Management. Journal of Cybersecurity and Privacy, 4(3), 494-517.
Lee, W. W., Zankl, W., & Chang, H. (2016). An ethical approach to data privacy protection.
Wang, S., Jiang, X., Singh, S., Marmor, R., Bonomi, L., Fox, D., ... & Ohno‐Machado, L. (2017). Genome privacy: challenges, technical approaches to mitigate risk, and ethical considerations in the United States. Annals of the New York Academy of Sciences, 1387(1), 73-83.
Mudzar, B. M., Muzdalifah, N., & Chew, K. W. (2022). Change in Labour Force Skillset for the Fourth Industrial Revolution: A Literature Review. International Journal of Technology, 13(5).
Kramer, R. (2016). From skillset to mindset: a new paradigm for leader development. Вопросы государственного и муниципального управления, (5), 26-45.
Pem, U., & Chophel, Y. (2024). Shifting From Content Based Approach to Skills Based Approach: Impact Study Research Report on the One Child Seven Skills Program. Journal of the International Society for Teacher Education, 28(1), 41-53.
Wang, D., Weisz, J. D., Muller, M., Ram, P., Geyer, W., Dugan, C., ... & Gray, A. (2019). Human-AI collaboration in data science: Exploring data scientists' perceptions of automated AI. Proceedings of the ACM on human-computer interaction, 3(CSCW), 1-24.
Zhang, A. X., Muller, M., & Wang, D. (2020). How do data science workers collaborate? roles, workflows, and tools. Proceedings of the ACM on Human-Computer Interaction, 4(CSCW1), 1-23.
Bangert, P. (2021, October). The necessity for collaboration between data scientists and domain experts. In SPE Middle East Intelligent Oil and Gas Symposium (p. D011S001R001). SPE.
Bass, E. J., Baumgart, L. A., & Shepley, K. K. (2013). The effect of information analysis automation display content on human judgment performance in noisy environments. Journal of cognitive engineering and decision making, 7(1), 49-65.
Rubin, V. L., & Conroy, N. (2012). Discerning truth from deception: Human judgments and automation efforts. First Monday, 17(5).
Mosier, K. L., Fischer, U., Morrow, D., Feigh, K. M., Durso, F. T., Sullivan, K., & Pop, V. (2013). Automation, task, and context features: Impacts on pilots’ judgments of human–automation interaction. Journal of cognitive engineering and decision making, 7(4), 377-399.
Bose, S., Dey, S. K., & Bhattacharjee, S. (2023). Big data, data analytics and artificial intelligence in accounting: An overview. Handbook of big data research methods, 32-51.
Ionescu, L. (2021). Big data analytics tools and machine learning algorithms in cloud-based accounting information systems. Analysis and Metaphysics, (20), 102-115.
Zhai, W., Wu, G., Bao, W., & Niu, L. (2021, April). Big data analysis of accounting forecasting based on machine learning. In 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP) (pp. 399-402). IEEE.
Deepa, N., Pham, Q. V., Nguyen, D. C., Bhattacharya, S., Prabadevi, B., Gadekallu, T. R., ... & Pathirana, P. N. (2022). A survey on blockchain for big data: Approaches, opportunities, and future directions. Future Generation Computer Systems, 131, 209-226.
Muheidat, F., Patel, D., Tammisetty, S., Lo’ai, A. T., & Tawalbeh, M. (2022). Emerging concepts using blockchain and big data. Procedia Computer Science, 198, 15-22.
Hassani, H., Huang, X., Silva, E. S., Hassani, H., Huang, X., & Silva, E. S. (2019). Fusing big data, blockchain, and cryptocurrency (pp. 99-117). Springer International Publishing.
Nadvi, K., & Wältring, F. (2004). Making sense of global standards. Local enterprises in the global economy: Issues of governance and upgrading, 53-94.
Angel, D. P., & Rock, M. T. (2005). Global standards and the environmental performance of industry. Environment and Planning A, 37(11), 1903-1918.
Henson, S., & Humphrey, J. (2010). Understanding the complexities of private standards in global agri-food chains as they impact developing countries. The journal of development studies, 46(9), 1628-1646.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Georgios L. Thanasas, Georgios Kampiotis
This work is licensed under a Creative Commons Attribution 4.0 International License.