Productivity Viewed From Work Ability and Work Operation Time With Mediating Variable On The Job Training (OJT)

Bagja Gumilar¹, Eko Hariadi², Achmad Imam Agung³
¹,²,³Postgraduate Vocational Education, Surabaya State University

bagja.20002@mhs.unesa.ac.id¹, ekohariadi@unesa.ac.id², imamagung@unesa.ac.id³

Abstract. This study aims to analyze the effect of work ability and work operational time on cadet productivity and analyze the role of the on-the-job training (OJT) variable in mediating the independent variable on the dependent variable in the Airport Electrical Engineering Occupation at Politeknik Matra Udara. Data were collected through questionnaires distributed to respondents. This research uses a quantitative approach, analyzes using Structural equation modeling (SEM), and uses the Smart-PLS statistical program. The research sample refers to the Isaac and Michael table using a 10% significance level. The sample of this study consisted of 115 cadets from various occupations in airport electrical engineering at the Air Matra Polytechnic who had participated in the on-the-job training (OJT) program. The results of the analysis show that work ability has a significant positive effect on cadet productivity. This shows that the higher a person's work ability, the higher his productivity. In addition, work-related operational time also has a positive effect on productivity. That is, the longer the working time owned by cadets, the higher the level of productivity. Furthermore, on-the-job training (OJT) proved to be a significant mediator in the relationship between work ability and work operational time and cadet productivity. This suggests that on-the-job training has an important role in improving productivity.

Keywords. Employability, Working Operation Time, Productivity, On-the-Job Training

1. Introduction

The on-the-job training paradigm in Indonesia allows people to learn and develop perfectly. Training seems to be able to produce the right knowledge, attitudes, and skills to exploit all available resource opportunities [1]. This makes the training sector have a central position as a key prerequisite in the optimization of other development sectors.

When human resources have the skills to create quality employment, it will have a positive impact on increasing productivity, which can benefit the economy [2]. Optimizing training in human capital utilization through improving intelligence, health, and skill levels is expected to improve work quality and productivity. Therefore, the transfer of knowledge and skills through training that can increase the possibility of a person obtaining an increase in work productivity is one of the motivations for actively participating in on-the-job training [3].

With the challenges of productivity, especially in the era of technological developments and changes in work paradigms, one must be able to make adjustments to
increase work productivity. Encouragement and support are needed so that each workforce is able to make appropriate adjustments to meet productivity demands. In order to achieve this goal, the on-the-job training (OJT) program in vocational higher education institutions has been recognized as a strategic means to develop the abilities and skills of OJT participants, which are expected to increase their work productivity.

This motivation to participate in on-the-job training is in line with the data in the field study obtained by researchers during observations at the Ministry of Transportation. Most of the training participants projected data stating one's enthusiasm to be able to become a qualified workforce through participation in on-the-job training. The following are details of data on participants who are currently participating in on-the-job training at the International Airport Distribution.

Figure 1: Number of Participants Undergoing OJT at the International Airport

Based on Figure 1, the researcher obtained data on OJT participants at the International Airport distribution, with a total of 200 people. This shows a high sense of confidence in the influence of training as the key to improving the quality of labor as human capital. Human capital is an inherent asset of a person and has the power to influence the value and capabilities commonly seen at intelligence, health, and education levels. It is this capital that reflects a person's quality of work and productivity in doing something [4].

Human capital investment by classical economic figures is oriented towards the urgency of implementing human skills investment through education and training schemes so as to support economic growth. Referring to the initial theory of human capital in the classical economic school, experts or specializations determine economic growth due to nature, and other factors of production become meaningless when there are no humans who are able to process them properly [5]. The explanation of education as investment in this case concerns human capital investment by confirming that the training industry is positioned as a national investment that equalizes the productivity of an educated person compared to a sophisticated machine [6].
The description of the relationship between education or training and productivity can also be illustrated as follows: [7]

![Diagram]

The output scheme can receive education well and adapt to the world of work more perfectly.

Figure 2. The Relationship Between Education or Training and Productivity

Referring to Figure 2, it appears that the investment scheme through on-the-job training undertaken by a person has an impact on the quality of self and competence that is owned for the better. Better skills are able to become a person's provision at work, which has an impact on performance in solving a problem faced effectively and efficiently. Good productivity at work is what makes the value of the workforce more appreciated, so that the existence of productivity will be more recognized and the income received will increase. This shows that participating in investment through on-the-job training oriented to human capital development related to the benefits received after investing is said to be appropriate or not (evaluation).

Productivity is not only limited to the quantitative aspect of producing a product but also to achieving satisfactory results through practical utilization of resources; it also includes aspects of individual behavior [8]. In their implementation, vocational training programs for formal education students have various names and types. Some of the program names known in vocational higher education in Indonesia are Field Work Practice (PKL), Apprenticeship, Internship Program, and On-the-Job Training (OJT). These programs have similar objectives, namely providing work competencies that are in accordance with industry needs. In other words, productivity includes not only the amount of output but also individual efforts to utilize available resources to achieve optimal results.

OJT relates to social learning theory, one of the three well-established theories of how people learn, particularly adults [9]. Social learning or observational learning suggests that learners imitate the behaviors they observe in others (instructors). The workplace provides a powerful learning environment, developing technical skills (hard skills) on modern work equipment as well as soft skills through experiences of teamwork in the field, communication, and negotiation. So in social learning theory, it contains external reinforcement and internal cognitive explanations to understand how a person learns from others, simulators, or artificial intelligence that are trending in today's modeling world. [10]

Cadets' employability includes their understanding of the technical aspects and basic knowledge required to solve problems that occur in the field. The development of this employability significantly contributes to increased productivity in an increasingly complex work environment. Work competency is a basic principle for the workforce to be able to do effective work and deliver superior performance [11]. Effectiveness in processing work to be completed as intended (productive) is characterized by the existence of work capabilities, which include knowledge, skills, and attitudes. [12]

Furthermore, the employability specialized for cadets is oriented towards the technical skills and knowledge required to successfully manage increasingly complex electrical systems.
in the airport environment. Work output as an indicator of the application of employability in an operational context determines service quality and system reliability [13]. On the other hand, work operational time plays an important role in training effectiveness, where good time management during OJT can improve cadets' readiness to face the challenges of the world of work.

Many previous studies have focused on the concept and effectiveness of OJT in developing employee work skills and its impact on productivity. Some studies have attempted to develop structured OJT methods or systems to improve training outcomes. However, research on the integration of vocational higher education into the world of work through OJT programs still needs to be deepened. It is important to continue this research, as OJT not only provides an effective way to improve individual skills, but also has the potential to understand the dynamics of the relationship between educational institutions and the world of work. This includes evaluating the impact of on-the-job training on cadets’ engagement in the work environment, the extent to which these training programs meet the needs of the workplace, and the impact of these initiatives on improving overall productivity. Although the effectiveness of OJT in personal development has been widely discussed in the literature, the lack of research highlighting the specific relationship between vocational higher education institutions and OJT programs may indicate a large gap.

The urgency of the research that has been described is the basis for the great involvement of researchers in understanding these variables holistically. Therefore, the researcher is interested in conducting a study entitled “The Effect of Work Ability and Cadet Work Operating Time on Productivity in the Airport Electrical Engineering Occupation with On-the-Job Training (OJT) as Mediation.” It is hoped that this research can contribute valuable insights into designing and improving OJT programs in the field of airport electrical engineering that are relevant to the development of work effectiveness, with the ultimate goal of increasing the overall work productivity of cadets at the airport.

1.1 Theoretical/Conceptual Framework

Work Ability on Productivity Improvement

Work productivity and work skills are two things that are interconnected. Employee work skills in carrying out tasks in an organization are very important [14]. An employee who has better work skills will certainly understand better what to do when facing a problem that arises. In addition, these employees will be faster at work and will not have to adapt to the tasks they carry out because they already have the skills. So that the company will more easily achieve its goals because it is supported by employees who already have skills and experience in their respective fields.

Employee work productivity is influenced by several factors, namely internal factors related to the employees themselves, such as education, skills, discipline, attitudes, motivation, nutrition, and health, as well as external factors related to the company environment, company policies and government policies as a whole, wages, means of production, climate, and work environment [15].

Work of Time on Productivity

The work of time plays a very important role in efforts to improve maintenance productivity. Here are the ways in which work time can contribute to increased maintenance productivity: 1) Proper Maintenance Scheduling; 2) Periodic Preventive Maintenance; 3) Real-

Work Ability on Productivity through On-the-Job Training (OJT) as Mediating Variables

The relationship between work ability and employee productivity has a close relationship. Good work ability can increase employee productivity because they are able to complete tasks more efficiently and effectively. However, the role of the mediating variable in on-the-job training can be a factor that affects the dynamics of the relationship between the two variables. On-the-job training provides an opportunity for employees to improve their abilities in the context of actual work. Thus, on-the-job training can be a mediator that strengthens the relationship between employability and employee productivity. In addition, external factors such as individual motivation, management support, and the work environment can also influence how well the relationship between employability and employee productivity can be established through on-the-job training.

Critically, it is important to consider that the relationship between employability, on-the-job training, and employee productivity is dynamic and complex. While on-the-job training can be a mediator that strengthens the relationship between employability and productivity, its effect may vary depending on various contextual factors. For example, training quality, individual motivation, and organizational support can influence how effective on-the-job training is in improving employability and, consequently, employee productivity. Therefore, research studies are needed to better understand how interventions such as on-the-job training can effectively improve employee productivity by enhancing their employability.

Work of Time on Productivity through the Mediating Variable of On The Job Training (OJT)

The relationship between Work of Time and productivity can be understood through the mediating variable, On The Job Training. Optimal work operation time can increase employee productivity as they have more time to focus on their tasks. However, to understand this relationship more deeply, the role of On The Job Training is crucial. On-the-job training can act as a mediator that strengthens the relationship between work operation time and productivity. When employees receive relevant and effective training, they can improve their skills and knowledge, which in turn can optimize the use of their work time. As such, On The Job Training acts as a link that enriches the relationship between work operating time and productivity, creating a more productive and efficient work environment.

With efficient uptime, employees can maximize their potential through the application of skills and knowledge acquired through on-the-job training. Such training can help them overcome challenges that may arise during work operations, thereby improving the quality and quantity of output. In turn, enhanced productivity can bring benefits to both the individual and the organization as a whole. Therefore, the mediating variable of on-the-job training is key to understanding and maximizing the positive impact of work operation time on employee productivity, as well as potentially creating a work environment that supports overall organizational growth and performance improvement.

1.2 Operational Framework

In accordance with the conceptual description and description in the theoretical framework above, the research hypothesis is found as a temporary answer to the research
problem, which can then be arranged as follows: The first hypothesis, H1: Work ability affects productivity in the airport electrical engineering occupation at the Air Matra Polytechnic. The second hypothesis, H2: There is an effect of work operational time on productivity in the airport Electrical Engineering occupation at the Air Matra Polytechnic. The third hypothesis, H3, is that work ability affects productivity through on-the-job training as a mediating variable in the occupation of airport electrical engineering at the Air Matra Polytechnic. The fourth hypothesis, H4, is that there is an effect of work operational time on productivity through on-the-job training as a mediating variable in the occupation of airport electrical engineering at the Air Matra Polytechnic.

1.3 Operational Model

Furthermore, based on the hypothesis of this study, the hypothesis model will be described as follows:

![Operational Model of The Study Shows Relationship Among Variables.](image)

2. Methodology

2.1 Research Design

This study aims to examine how much influence work ability and operational time have on productivity if mediated by on-the-job training. This research is categorized as quantitative research with Structured Equation Method (SEM) analysis. Based on this, researchers apply analysis to the elements of the partial mediation type. Researchers will draw conclusions from the findings that imply that there is not only a significant relationship between the mediator and the dependent variable but also a direct relationship between the independent variable and the dependent variable. Through data processing in this study, researchers used smartPLS SEM (Partial Least Squares Structural Equation Modeling) software. PLS has the ability to explain the relationship between variables and to do analysis in one test [16]. This research was conducted by distributing questionnaires to respondents online.

2.2 Population of the Study

Population is defined as a generalization area consisting of subjects or objects that have certain qualities and characteristics set by researchers to study and then draw conclusions [17]. The population in this study was 200 cadets. The population can be detailed as follows:
Table 1. Population of cadets of D3 and D4 Airport Electrical Engineering Polytechnics within the Ministry of Transportation who are Undergoing OJT at Class I International Airport in Odd Semester 2023.

<table>
<thead>
<tr>
<th>No</th>
<th>Bandar Udara</th>
<th>Number of cadets undergoing OJT (people)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Soekarno-Hatta</td>
<td>26</td>
</tr>
<tr>
<td>2.</td>
<td>Halim Perdanakusuma</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>Adisutjipto</td>
<td>8</td>
</tr>
<tr>
<td>4.</td>
<td>Minangkabau</td>
<td>8</td>
</tr>
<tr>
<td>5.</td>
<td>Frans Kaisiepo</td>
<td>5</td>
</tr>
<tr>
<td>6.</td>
<td>Husein Sastranegara</td>
<td>5</td>
</tr>
<tr>
<td>7.</td>
<td>Kertajati</td>
<td>5</td>
</tr>
<tr>
<td>8.</td>
<td>Mopah</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>Raja Haji Fisabilillah</td>
<td>10</td>
</tr>
<tr>
<td>10.</td>
<td>Sultan Mahmud Badaruddin II</td>
<td>10</td>
</tr>
<tr>
<td>11.</td>
<td>Bali Baru/Bali Utara</td>
<td>-</td>
</tr>
<tr>
<td>12.</td>
<td>Hang Nadim</td>
<td>8</td>
</tr>
<tr>
<td>13.</td>
<td>Juwata</td>
<td>6</td>
</tr>
<tr>
<td>14.</td>
<td>Sentani</td>
<td>3</td>
</tr>
<tr>
<td>15.</td>
<td>Sultan Syarif Kasim II</td>
<td>6</td>
</tr>
<tr>
<td>16.</td>
<td>I Gusti Ngurah Rai</td>
<td>26</td>
</tr>
<tr>
<td>17.</td>
<td>Juanda</td>
<td>16</td>
</tr>
<tr>
<td>18.</td>
<td>Sultan Aji Muhammad Sulaiman Sepinggan</td>
<td>10</td>
</tr>
<tr>
<td>19.</td>
<td>Sultan Hasanuddin</td>
<td>21</td>
</tr>
<tr>
<td>20.</td>
<td>El Tari</td>
<td>5</td>
</tr>
<tr>
<td>21.</td>
<td>Jenderal Ahmad Yani</td>
<td>-</td>
</tr>
<tr>
<td>22.</td>
<td>Sam Ratulangi</td>
<td>8</td>
</tr>
<tr>
<td>23.</td>
<td>Syamsudin Noor</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>200</td>
</tr>
</tbody>
</table>

The sample is part of the population to be studied [18]. Therefore, the sample must be seen as a picture of the population and not the population itself. Then, for the calculation of the number of samples, researchers used the Isaac and Michael table with an error rate of 10% [17]. The reason researchers use the Isaac and Michael table is because they can know the sample size directly based on the population size and the desired error rate. Based on the Isaac and Michael table, from a population of 200 at a significance level of 10%, the number of samples obtained is 115.
Table 2. Determination of Isaac and Michael's Sample Size from a Certain Population with an Error Rate of 1%, 5%, and 10%

<table>
<thead>
<tr>
<th>N</th>
<th>1%</th>
<th>5%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>20</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td>35</td>
<td>33</td>
<td>32</td>
<td>31</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>200</td>
<td>154</td>
<td>127</td>
<td>115</td>
</tr>
<tr>
<td>210</td>
<td>160</td>
<td>131</td>
<td>118</td>
</tr>
</tbody>
</table>

To facilitate the process of collecting data that can describe the characteristics of a particular population, a portion of the affordable population is selected to represent the population as a whole [19].

2.3 Operational Definition and Variable Measurement

In this study, the variables used include independent variables (work ability and work time), dependent variables (productivity), and mediating variables (on-the-job training). Work ability is a concept that refers to the ability of individuals to meet the demands of their work, both in terms of physical and psychosocial aspects. Time of work refers to the period or duration used to carry out a particular job or activity. On-the-job training (OJT) is a training method in which individuals learn and develop cadets' work skills, knowledge, and competencies directly in the workplace. Productivity emphasizes the amount of time required to complete one production cycle or one unit of output. Cycle time monitoring can provide insight into time efficiency.

2.4 Evaluation and Scoring

The data collection technique in this study used an online questionnaire. The questionnaire in this study was used to collect sample data from a specific population [20]. Questionnaires were distributed to cadet students of the D3 and D4 Polytechnic Airport Electrical Engineering Programs within the Ministry of Transportation who were undergoing OJT at Class I International Airport in the odd semester of 2023. Questionnaire instruments are used to measure data on work ability variables, work operating time, on-the-job training, and productivity using a Likert scale. Each item has five answer choices with a score level of 1 to 5.

In the process of preparing this research instrument, there are several elements referred to as favorable (F) and unfavorable (F). It should be noted that the favorable elements must be done carefully to ensure that the instrument is related to the research objectives. Based on
careful consideration, the design of this instrument allows for the measurement of variables relevant to the needs of the study. In addition, the instrument was piloted and corrected to ensure that it could generate accurate and reliable data.

Conversely, elements that are considered “unfavorable” should be considered. During the process of creating the instrument, there may be problems or obstacles, such as resource limitations or technical problems. If not handled properly, these obstacles may affect the credibility or robustness of the instrument. Therefore, to address these issues, it is important to remain honest and provide a clear explanation of the possible impact on the research results.

2.5 Statistical Treatment of Data

This research is a causal study in which the influence between variables is analyzed using the Partial Least Square Structural Equation Model (SEM-PLS) data analysis method, assisted by SmartPLS 4.0 software. Partial least squares analysis uses statistical multivariate techniques, which conduct tests and comparisons between dependent variables and independent variables. SEM-PLS analysis is also a method of analyzing structural equations with a variant approach that can simultaneously test structural models [21]. Covariance-based structural equation models are used to check theories [22]. On the other hand, variance-based partial least squares models are used to generate prediction models.

The outer model measurement test (M) and inner model structural test (M) are the two stages of data analysis in this study. First, the outer model tests the reliability and construct validity of all indicators, and second, the inner model structural test tests the strength, weakness, or even the absence of influence between variables.

3. Results and Discussion

The structural model, or inner model, can be evaluated by analyzing the significance of the relationship between existing variables using the bootstrapping method. The stage used in this structural model or inner model is to determine the goodness of fit and significance value using the path coefficient test. The following is a description of the results of hypothesis testing on SEM-PLS.

Figure 4. Structural Model (Inner Model)
The model fit test (goodness of fit) is one of the most frequently used non-parametric tests, namely testing the fit between certain observations and the frequency obtained based on the expected value. This model feasibility test looks at the R-square value, which ranges from 0 to 1, with a category of 0.75 considered good, 0.50 moderate, and 0.25 considered poor. The following R-square values based on the results in SEM are shown in the table and figure, namely:

Table 3. R-Square Result Productivity

<table>
<thead>
<tr>
<th>Variable</th>
<th>Adjusted R-Square</th>
<th>R Square</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productivity (Y)</td>
<td>0.836</td>
<td>0.841</td>
<td>Good</td>
</tr>
</tbody>
</table>

From the table above, the suitability of the model can be seen from the r-square results of productivity worth 0.841 (84.1%), meaning that productivity can be explained by the variables of work ability, work operational time, and on the job training by 84.1%. The rest is explained by other variables that are not in this study.

In hypothesis testing there is a significance value between variables where this significance value is obtained through the bootstrapping procedure. Seeing the significance of the hypothesis is seen from the parameter coefficient value and the significance value of the t-statistic in the bootstrapping algorithm report. To determine whether a relationship is significant or not, it can be seen from the p-value compared to the 10% error rate following the research hypothesis testing.

Table 4. Research Hypothesis Testing Results

<table>
<thead>
<tr>
<th>Variable</th>
<th>Original sampel</th>
<th>T-Statistik</th>
<th>P-values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Ability -> Productivity</td>
<td>0.378</td>
<td>3.566</td>
<td>0.000</td>
<td>Significant</td>
</tr>
<tr>
<td>Working Operational Time -> Productivity</td>
<td>0.528</td>
<td>5.017</td>
<td>0.000</td>
<td>Significant</td>
</tr>
<tr>
<td>Employability -> On The Job Training -> Productivity</td>
<td>0.172</td>
<td>1.887</td>
<td>0.060</td>
<td>Significant</td>
</tr>
<tr>
<td>Working Operational Time -> On The Job Training -> Productivity</td>
<td>0.328</td>
<td>3.811</td>
<td>0.000</td>
<td>Significant</td>
</tr>
</tbody>
</table>

The first hypothesis, which aims to influence work ability on productivity, has an effect of 0.378 with a t-statistic value of 3.566 and a p-value of 0.000 <0.10. So the work ability
hypothesis has a positive and significant effect on productivity. From the results of the questionnaire data, it was found that the average person can answer the statement very well. This is due to various factors, one of which is learning during lectures. This finding shows that cadets of the D3 and D4 Polytechnic Airport Electrical Engineering Programs within the Ministry of Transportation who are undergoing OJT at Class I International Airport have good work skills. High work ability affects a person's productivity to complete tasks more efficiently and effectively [23]. Good employability means that a person has the necessary knowledge, skills, and experience to handle tasks well [24]. Based on this, the researcher assessed if the cadets of the D3 and D4 Polytechnic Airport Electrical Engineering Study Program have the ability to find and apply the best solution to problems. High employability also includes the ability to quickly adjust to changes, such as understanding market needs, developments in tools and technology, and updates to work procedures.

Moving on to the second hypothesis, work operating time has an effect of 0.528 with a t-statistic value of 5.017 and a p-value of 0.000 <0.10. So the researcher considers whether the hypothesis of work operational time has a positive and significant effect on productivity. The level of productivity of cadets is strongly influenced by their productivity over time. The amount of time available to work directly affects how many tasks can be completed in a given period of time [23]. With sufficient operational time, individuals have the opportunity to plan, work on, and complete tasks in a more organized and efficient manner. It is shown that adequate working time is essential to increasing productivity. By giving people or organizations sufficient time to properly plan, execute, and complete tasks, they can achieve better results in the same or even less time [25]. Therefore, efficient and effective management of operational time is key to improving the productivity of individual cadets.

The third hypothesis examines the effect of work ability on productivity through on-the-job training, as mediation has an effect of 0.172 with a t-statistic value of 1.887 and a p-value of 0.060 <0.10. Based on these results, the researcher concludes the hypothesis that work ability affects productivity through on-the-job training as a mediation. Cadets in the D3 and D4 Polytechnic Airport Electrical Engineering study programs generally have good work skills. This can be seen in the respondents' answers to the knowledge indicator, which states that in general, the cadets can describe the work and procedures set by the company well. This is followed by a statement that every work order given by the instructor can be interpreted in a structured manner so that it has an impact on the performance of cadets in carrying out the OJT program in their respective units. In addition, the indicator of knowledge related to the technical implementation of work can be interpreted in the good category. Where cadets are able to analyze the system in normal operational conditions and during disruptions, so that they are able to identify appropriate work equipment in completing each work operational task. Optimization of work operational time can be a determinant of productivity levels, especially when on-the-job training (OJT) is carried out appropriately. [26].

The fourth hypothesis investigates the effect of the effect of work operational time on productivity through on-the-job training as a mediating variable. Based on the calculated results of data testing, the significance value of the operational time variable on productivity has an effect of 0.328 with a t-statistic value of 3.811. The data processing findings accompany the p-value result of 0.000, which is smaller than the significance level (α) of 0.10. So that the calculated results of the significance test place the H4 hypothesis, namely the effect of work operating time on productivity through on-the-job training as mediation, to be accepted. Researchers found that the existence of on-the-job training can encourage controlled work-management alignment. This is supported by the findings of respondents' answers to the
questionnaire, which stated that on-the-job training trains all cadets to have an organized work system in each position. The organized work system in question makes cadets have a scheduled work agenda with a priority scale so that it can be achieved. Therefore, familiarization with work schedules and setting priority scales makes work-operational time more effective and efficient. Then, by placing oneself as a cadet in the D3 and D4 Airport Electrical Engineering Polytechnic Study Program within the Ministry of Transportation, one will have better productivity. This finding concludes that the shorter the time required to complete the work, the higher the labor productivity, so that it can switch to completing other work [27].

4. Conclusions

In conclusion, the research resulted in an equally significant effect on each variable relationship. Thus, the researcher gets the results of all hypotheses stated as accepted when referring to the test results. 1) Work ability has a significant effect on the productivity of Air Matra Polytechnic cadets and is also a key factor in determining how efficient a person is in completing tasks. Individuals with high work ability tend to be able to produce better results in less time because they have a better understanding of the tasks at hand as well as the skills and knowledge needed to complete them well than others. 2) Work operational time has a positive and significant effect on the productivity of Air Matra Polytechnic cadets because, with sufficient operational time, individuals have the opportunity to plan, work on, and complete tasks in a more organized and efficient manner. 3) Work ability has a positive and significant effect on the productivity of Air Matra Polytechnic cadets through on-the-job training. This is because on-the-job training is a program that provides cadets with the opportunity to improve their ability to understand and analyze the dynamics of real work. 4) Optimization of work operational time can be a determinant of productivity levels, especially when on-the-job training is carried out properly. The existence of on-the-job training can actually encourage the alignment of controlled work management. On-the-job training trains all cadets to have an organized work system in each position and have a scheduled work agenda with a priority scale. Habituation to work schedules and setting priorities makes work-operational time more effective and efficient. Then placing oneself as a cadet at the at the Airport Electrical Engineering Polytechnic within the Ministry of Transportation will have better productivity.

4.1 Recommendations

Suggestions that can be given are divided into several sectors, especially for cadets, program organizers, and educational institutions (Polytechnics). It is important for cadets to continue to improve skills and knowledge through the OJT program in order to increase work productivity. As for OJT program organizers, it is necessary to pay attention to the quality of training and ensure that the material is in accordance with industry needs so that the effectiveness of OJT in improving work skills can be optimal. Educational institutions (polytechnics) should increase collaboration with the industrial world to develop a relevant curriculum. So, graduates have ready-to-use work skills and can support productivity in the workplace.

References

