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Abstract. In studying the way human beings evaluate randomness and produce random objects, 

cognitive psychology showed that the mind finds it difficult to recognize true randomness as well 

as to produce it because it is influenced by numerous biases. Studying them can help to 

understand better the way it is structured. In parallel, mathematics showed that more random 

objects have a higher algorithmic complexity. Computing lately provided practical means to 

calculate the algorithmic complexity of objects of finite size and also produced new encounters 

between mathematics and cognitive psychology by allowing the latter to envision new models 

for the brain, inspired by algorithmic logic. In this context, our research applied eye-tracking 

techniques to the study of the perception of complexity. Forty subjects had to order images 

belonging to ten groups of four according to decreasing (perceived) complexity. The hypothesis 

was that images with the higher algorithmic complexity would be perceived as more complex as 

well and would cause longer fixation times. However, experimental results did not confirm these 

hypotheses as the correlation between algorithmic and perceived complexities was low, and the 

relation between complexity and fixation time was not linear but closer to an inverted “U” shaped 

curve. This may be due to contextual effects and to choose images with complexities too close 

to each other, as subjects found it difficult to order them as requested. Further experiments must 

then be carried out with conditions better controlled and modified parameters.   

Keywords. Cognitive psychology, theory of complexity, randomness, visual perception, 

perceived complexity, eye-tracking  

Introduction 

This research in the framework of cognitive psychology is concerned explicitly with the studies 

on randomness. Cognitive psychology has long been studying the ability of humans to recognize 

random objects and their ability to produce them. These capabilities have certain limits in both 

cases: humans fail to recognize objects constructed from simple algorithms, and they have 

difficulties in generating truly random objects. 

Thus there is an important difference between “human random” and “mathematically 

random”, and this is this difference sparked my interest, although I am not a mathematician. 

Intuitively, random objects are more complex than those built from an algorithm. The 

question of the precise characteristics of randomness is thus closely linked to the one of 

knowing how to measure complexity. Mathematics indeed developed ways to measure it, and 

recently using the computer, and it has become possible to devise pragmatic methods of 

calculation for the complexity of objects of finite size. 
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Based on a review of the relevant literature, the first two parts of this study are devoted to 

providing the theoretical background in which our research developed. Chapter 1 presents this 

background from a more mathematical point of view, addressing the question of the 

characteristics of randomness and showing the link between randomness and complexity. It 

then comes to the issue of the computability of computational complexity and introduces the 

pragmatic method used to calculate it. It also presents a number of biases specific to the way 

human beings assess and produce random objects. 

Chapter 2, also based on a literature review, this time looks at the context of the research from 

the perspective of cognitive psychology. Based on several earlier research, the human 

limitations and biases mentioned in the previous chapter try to examine the different parameters 

that can influence the perception of randomness and complexity. 

Our literature review for both chapters also shows that human limitations and biases 

mentioned above can be used by researchers to make assumptions about brain structure, and 

since the inception of computers, these assumptions are much based on the way these 

“electronic brains are structured. Computing thus led to new ways of building models for the 

human brain. This can be seen in Chapter 2, where it is clear that the mathematical concepts 

appearing in  Chapter 1 can help to suggest interpretations for the observed limitations of human 

brain. 

Chapter 3 provides details of the experiment, its unfolding, the equipment used and the results 

obtained. In the context defined in the first two chapters, we sought to investigate the 

relationship between complexity as perceived by human beings and computational complexity 

calculated from the new methods mentioned in Section 2. Our first hypothesis, based on earlier 

publications we scanned, was that the images offering the highest computational complexity 

would actually be preceived as the most complex. The second hypothesis from our literature 

review was that the subjects would stare longer at the more complex images. 

As previous research made little use of eye-tracking measurements, we took this orientation and 

proposed an experiment where participants would be requested to rank forty images in order of 

decreasing complexity, while their eye movements were recorded. 

The experimental setup was as follows: each participant was installed in front of a computer 

screen to which an eye tracker had been installed. The screen showed (in the same order for 

each participant) ten successive patterns of four images of a known algorithmic complexity. 

Each pattern was displayed for a limited time, during which the subject had to select images 

with the mouse, according to what he considered as the order of decreasing complexity. The 

eye tracker, after data processing, provided the duration of participant’s fixation of each image 

on the screen. 

Not having confirmed the hypotheses, the results obtained are discussed at the end of this 

work, opening the field to new research and perspectives by proposing studies that explore the 

oculometric data with more finesse and on larger samples.The results did not confirm the 

previous assumptions. Their discussion at the end of this work will open the field to new 

research and perspectives by proposing studies that explore the eye tracking data with more 

precision and using more extensive samples. 

 

1 –Randomness and complexity 

1.1. Why studying random objects ?  

The study is concerned with examining the relationship between objective (algorithmic) and 

cognitive (perceived) complexity. Chapter 1 introduces its mathematical context, in link with 

cognitive psychology. 
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Cognitive psychology has an interest for the way humans perceive randomness, because 

studying this allows gaining knowledge about intuition and forms of reasoning, which in turns 

makes pôssible to develop hypotheses on the structure and functioning of human brain. Random 

situations provide proper experimental situations to address these two issues, whether we study 

how subjects perceive randomness, or how they produce random objects or events (or at least 

the most random possible). 

 

1.2. Human biases 

Human beings evaluate the degree of randomness of objects presented to them according to 

their spontaneous or acquired conceptions, i.e. from their own biases, and conversely, they 

produce “random” objects that bear the mark of these biases. The study of these biases, in 

perception as in production, and more generally, the study of the relationship between 

randomness and human beings, may provide important information on the mode of operation 

of the human brain. Among the observed bias, we can quote:  include agreement bias (positive 

answers to a question are more numerous than they should be), positivity bias (“favorable” 

responses are more common), and precedence bias (the first choice offered is selected more 

often). 

One of the most important human biases concerning randomness is alternation bias: the 

probability of alternation within a string produced by a human subject is higher than the one 

that can be calculated for a truly random sequence. This can be explained by the limitation of 

human working memory. As it possesses only 5-10 “boxes”, the brain divide the string into 

chunks on which the law of large numbers is then applied “locally”, whereas it is true only at 

the limit. This suggests that the human intellect has a memory component (which manages 

storage proper) and an algorithmic component (which can devise the workaround to the 

memory limitation by defining new data structures). 

 

1.3. Relationship between “human” and “mathematical” randomness 

Researchers have tried to compare in a concrete manner “human randomness” (perceived or 

produced) to “objective randomness”, which required to have available an objective measure of 

the degree of randomness of an object. This is where the needs in mathematics and psychology 

meet. 

What criteria can be used to distinguish in an objective manner a sequence which is random 

from another which is not? Intuitively, random objects are mathematically more complex than 

objects that can be built following specific rules. The first question is thus whether it ispossible 

to calculate the complexity of an object (another remark is that human beings also have an 

imperfect intuition of complexity: they perceive the frequent, familiar, prototypical (or easy to 

learn, “learnable”) visual information as less complex). 

 

1.4. Turing machines and binary sequences 

Considering the binary sequence ({001110101110101 ...}) as the archetypal object – an 

object to which any other may ultimately be reduced – and in order to address the issue of 

determining the complexity of a sequence, the Turing Machine (hereafter TM) may be used. It 

is a simple model of computer, receiving instructions on a input tape, and producing a result on 

its output tape. 
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Such a system can also be described as a finite state automaton, representable by a graph or 

by the formalism of the λ-calculus devised by Church (it is through the use of these various 

representations that  it has been proved, in response to the Hilbert “decidability question”, that 

it existed non-computable or undecidable problems, i.e. mathematical statements for which 

there exists no algorithm for deciding whether they are true or not). 

 

1.5. Calculating algorithmic complexity 

Intuitively, the more random a chain is, the more it should be complex, i.e. complicated to 

generate. The algorithm allowing to build it must be of greater length. An undecidable problem 

should then have an infinite complexity (the algorithm for generating it would be of infinite 

length). If an infinite sequence is generated by a finite length program on an universal TM, it can 

thus be generated on any TM (any finite sequence is necessarily generable by a finite length 

program, e.g. an instruction to copy the input sequence to the output tape (“photocopier” TM). 

According to this reasoning, the complexity of a series is the minimum size of a program 

able to produce it. Thus, in the case of a program p producing the series s on a universal TM 

called T, the complexity KT of s est: 

KT(s) = min {|p|,T(p) = s}  

This measure also allows to decide the degree of randomness of s. A series is considered the 

more “random” as its complexity is high for its length. If the shortest program producing it is 

longer than it, then s is considered random. In the case of an infinite sequence, if sn is the series 

truncated to its first n terms, then s is random if and only if there exists an integer c as the 

complexity K(sn) > n – c for whatever value of n. 

The Kolmogorov Complexity theoretically applies only to infinite series. But practically, for 

psychology experiments where subjects are asked to evaluate or produce chains rarely exceeding 

50 characters, it is extremely important to approach the Kolmogorov-Chaitin complexity of short 

chains. 

As there is no algorithm to tell whether a TM will stop (halting problem), it is theoretically 

impossible to calculate the function K, a fact which implies the non-computability of 

Kolmogorov complexity. However the latter has been usually estimated by pragmatic ways, for 

example through the use of compression algorithms as lossless LZW (Lempel-Ziv-Welch): the 

more compressible a string is, the lower its complexity. 

The Levin-Solomonoff algorithmic probability of a sequence is connected to the 

Kolmogorov complexity as the probability of obtaining this result from an TM receiving a 

random sequence of instructions – provided that the TM accepts only programs containing an 

“End” instruction. Soler-Toscano and his colleagues were able to calculate this probability 

pragmatically in 2014 through a calculation limited to 5-state TMs, and by limiting the duration 

of operation to 500 steps (the curve below shows that most TMs stop before 100 steps). They 

also used “busy beaver” functions that predict after how many calculation steps a MT will not 

stop anymore. 
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x-axis: number of calculation steps before stop.  

y-axis : number of 5-state Turing Machines. 

This allowed to obtain a formal definition of algorithmic complexity that would be appliquable 

for experimental situations of cognitive psychology, as it may apply to finite-size objects – a 

size adapted to studying human perceptions. 

 

2 - Visual perception and processing of complexity 

2.1. The “intuition of probable” and its limitations 

Human mind seems to have a certain intuition of probable: if an experimenter repeatedly 

pulls balls from a bag in front of children, when the bag content is shown to them, they stare 

longer at statistically surprising contents. This could indicate the existence of a human innate – 

or at least very early – intuition of randomness. Experiments also show that computational 

complexity is a good predictor of the subjective (perceived) level of randomness. But this 

human intuition is itself limited: a sub-suite from the sequence of π decimals is not 

spontaneously recognised and is evaluated as random. Another example is this sequence xn + 1 

= f(xn), which may appear random to a human subject who examines its curve (below). 

 
However, if we look at the curve built in the plane (x,y) for the points of coordinates (xn , xn+1), 

then the function sin (πx) used to build the sequence becomes clearly visible : 
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Although algorithmically very simple, those two sequences appear very complex in terms 

of subjective randomness. 

 

Human brain finds difficult to memorise chains with a too high subjective complexity. For 

the capacity of memorisation as well, computational complexity appears to be a good predictor. 

Presented with too complex chains, subjects generate instead chains of lower complexity. 

Experiments of memorisation of patterns with children – who have a lower processing capacity 

than adults – show a faster emergence of patterns that are more structured, hence easier to learn 

/ memorise. This is in line with the hypothesis mentioned in chapter 1 that the brain, because of 

its limited processing capacity, tends to “create structures” in complex objects, i.e. manipulate 

their complexity in the sense of a simplification. One of these methods for creating structures is 

chunking, i.e. splitting objects into sub-elements, sometimes already known through prior 

learning, a prior knowledge that should be taken in account. 

The probability of having previously seen an object influences its familiarity, hence its 

learnability. An objective factor of familiarity is its frequency of appearance, which means its 

objective probability. The algorithmic probability of a given binary string can be defined as the 

probability of obtaining this sequence through the execution of a random program. If each 

instruction is chosen randomly, shorter programs (thus less complex sequences) are logically 

more likely. An experiment where subjects were asked to rate the degree of randomness of 4x4 

tables extracted from photos of natural scenes (Wikimedia commons pictures) – i.e. to attribute 

them a subjective randomness – showed that subjective and natural randomness are indeed 

correlated (r = .75, p <.0001), as well as computational complexity and subjective rabndomness 

(r = .52, p <.0001). 

This result suggests that our perception of the complexity depends in part on our perception 

of natural scenes. It is possible that the brain learns visually to distinguish randomness, through 

looking at the world. Among the prior knowledge used in remembering contexts, there would 

be then what one might call a “statistical knowledge of the world”. 

Psychologists also use another parameter: learnability is not only based on the structure of the 

object itself (its complexity), or its relationship to the context (its shape proximity to other objects, 

as in the case of natural scenes) but on what could be characterised as how a community perceives 

it. The most learnable elements are better remembered and thus move more easily across the 

community. The learnability of an item thus appears as a measure of its adaptation to the human 

community where it spreads. Experiments with short stories show that more complex ones are 

generally less learnable, although there are exceptions, based on interest, oddity or even degree 

of humor. 
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Another parameter, the prototypicality of an object, is the degree of correspondence between 

this object and what people have learned to expect: the object is “typical” or “prototypical” of a 

class of objects known by previous experience. Some studies on web sites show a preference for 

sites “matching expectations”. In the “prototypicality bias”, the oak, for instance, is quoted more 

often when subjects are asked for a tree. It appears as the representative for the whole class and 

concept of “tree”. This could be due to the serial storage of the class elements in the brain, the 

oak being the first element and hence accessed first. 

 

Complexity and preference 

Several experiments show the influence of various parameters onto the attention given to 

the objects by the subjects – attention being after all the first necessary element to establish a 

possible preference. 

A study on the influence of the complexity of the packaging on consumers attention has 

shown that increasing the quantity of information units on the packaging also increases visual 

attention (number and duration of eye fixations). This can be explained by the need for a longer 

processing time, due to the limitations of processing capabilities. But another study found that 

consumer motivation – a parameter independent of object complexity – as well as the time given 

to the subject to reach a decision also influence the choice of the information visually processed. 

Besides, ads with a degree of originality attract more attention – and ads both original and 

familiar are even more attractive (see the relationship learnability-prototypicality). 

However, conclusions differ as to whether simplicity or complexity should be favoured. 

Some authors even define new complexity parameters (feature complexity vs. design 

complexity). Indeed, if limitations on processing capacity should lead to avoid a too high 

perceived complexity, conversely, too low complexity (although it would theoretically allow 

easier storage) would appear as annoying, hence unattractive... This led to the Berlyne theory, 

which predicts average complexities to be the best, with an “inverted U”-shaped complexity-

attractivity relationship. However, empirical evidence proved quite inconclusive. 

A study using websites screenshots showed that websites with low visual complexity and 

high prototypicality were perceived as very attractive, and demonstrated a linear (rather than 

“inverted U”) relationship between aesthetics and visual complexity. This can however be 

explained by the fact that websites are highly complex objects, and might be located on the right 

side of the inverted-U curve. The study also suggests a positive relationship between 

prototypicality and aesthetics. 

Subjects’ gender seems to be a parameter as well: several experiments showed that boys 

preferred high complexity websites, while girls favoured those with medium or low complexity. 

 

Familiarity and preference 
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Relation familiarity – appreciation according to Colman 

Finally, a rather old experiment showed an inverted-U curve connecting attractiveness 

(appreciation) to familiarity for groups of letters, some of them only forming words. In this 

experiment, familiarity was dependant on three same (and increasing) age groups. 

 

3 - Experimentation 

The context of the question 

The invention of computers has provided a new paradigm and hence new hypotheses to 

study humain brain organisation. Hypotheses on its structure are now much influenced by 

computer, with algorithmitic as well as storage characteristics. Our research follows on this 

context, with such characteristics as chunking, serial access, or structure creation that we 

introduced in preceding sections. Hence we tried to compare the algorithmic way of working 

of the computer and human brain through the study of cognitive complexity. 

Researchers still debate to decide if the human tendency to perceive and process complexity 

(randomness) is or not innate, but in any case, experiments point to an ability acquired extremely 

early. Whatever the case, experiments have shown that, compared to the machine, human brain 

knows some weaknesses, resulting in biases, and might precisely use thoses biases to facilitate its 

processing. Thus it would favour and select frequent, familiar, protoypical and learnable visual 

information as it perceives it as less complex. Another finding is that more complex information 

is examined longer, maybe because finding structures in such data is more difficult and takes 

more time. 

Although original, those previous experiments have limits. So we decided to study the pêrception 

of complexity using eye tracking, a method that have not been yet used on this topic. Or aim was 

more specifically to evaluate the fixation time for scenes of different complexities, and we made 

the following hypotheses: 

 The images perceived as more complex are indeed more complex ; 

   As a consequence, we expect the more complex images to be stared at longer. 

The experiment 

40 participants comfortably installed at 50 cm from a computer screen on which simple geometric 

images were shown were requested to order these images according to decreasing complexity. 

Their aye movements were recorded during their work. The following table shows participants’ 

demographic characteristics. 

 Number Mean age  Standard deviation 

Men 14 30 4.39 

Women 26 15 3.60 

 

The computer was a laptop AMILO Pro V3545, Fujitsu / Siemens, modèle M-52202 under 

UBUNTU, the screen set to a 800x600 resolution. Eye movements were recorded at 30 Hz 

through a USB 1,3 megapixels Microsoft - LifeCam VX-2000 1381 camera (photo). The eye 

tracking programme was REBOL, also used to prepare the interface. Part of the software was 

written in C++. 

The 40 images shown to the participants were those already used in a previous 2015 experiment 

by Kempe, Gauvrit et Forsyth. Ten successive screens were displayed, from A to J, each 

consisting in a 4-image (2x2) grid, numbered 1 to 4. 
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Figure on the left shows as example 

the group screen A (images A1 to 

A4). The images were shown in the 

same order to each participant. 

The participant was asked not to 

move his/her head during the 

experiment. S/he was first requested 

to fill age and gender on a form (next 

page). 

 

Then, after a calibration phase, 

the participant receives on-screen 

the precise instructions on the task : 

ordering the images in each group of 

4 according to decreasing 

complexity. The set time to do so 

was 10 seconds. When a beep was 

heard, the subject had only 4 more seconds to complete the ordering. 

The task proper started after a training phasis, in order to ascertain the participant had well 

understood what s/he had to do. 

Next figure shows again images A1 to A4, with the interface the subject must use to order 

the images by clicking on each button in good order. 

 

Analysis of the data  

An index of the perceived complexity 

is given by the mean rank given to each 

image  by the subjects. Real complexity is 

measured with the R acss package. The 

table below gives the correlations between those two 

complexities. 

 

The values do not confirm our 1st hypothesis of a 

correlation between perceived and real complexities. 

Unlike in previous studies, out of 10 stimuli, 2 give 

a positive correlation. 

 
Figure1 : Images A1-A4 on the screen 

 
Figure2:  Initial screen (participant profile fill up) 

 
Figure3: The interface with the buttons where the 
participant clicks to order the images. 

Pattern R 

1. 0.5426 

2. -0.05384 

3. -0.9212 

4. -0.3228 

5. -0.4743 

6. -0.8969 

7. -0.3202 

8. -0.5057 

9. -0.8582 

10. 0.7383 

Table 3 : Correlation coefficient R real 
and subjective complexity. 
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Our 2nd hypothesis was that more complex pictures would be stared at longer. An 

hierarchical ANOVA with repeated measures was used to see the effect of the pattern and the 

rank attributed to an image onto the fixation time : 

 
y : fixation time, X1 : pattern, X2 : rank 

 

 

 Df Sum Sq Mean Sq F value Pr (>F) 

Screen  (pattern) 1 1849 1849 14.29 0.00016 *** 

Rank (Complexity) 1 192 192 1.48 0.22365 

Residuals 1596 206433 129   

Table 4 : Values F, influence of pattern and rank given to each image on fixation time 

 

This table shows a significant pattern effect, which is explained by the fatigue of the 

participants, as the fixation time tends to decrease along the experiment (figure left). On the other 

hand, there is no significant effect of the rank onto fixation time. In opposition to our 2nd 

hypothesis, we found no relation between perceived complexity and fixation time. However, the 

sample shows a inverted-U curve suggesting the relation is not linear (figure right) 

The next table, that gives the list of correlations entre between fixation time and real complexity 

for each of the 10 patterns, confirms the same tendency : there is no global confirmation of any 

relation between these parameters, although some values of R are significant. 

Pattern R Pattern R 

1. -0.02761 6. -0.23 

2. 0.16 7. 0.08 

3. 0.01 8. -0.02 

4. -0.03 9. 0.04 

5. -0.03 10. -0.18 

Tableau 5. Correlation coefficients R fixation time / real complexity 

  
Figure 5: Fixation time per pattern Figure 6 : Relation perceived complexity / 

fixation time 
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Conclusion 

The aim of this research was to examine how cognitive complexity is perceived visually. To 

choose our hypotheses, we were inspired by the work of earlier researchers, which produced 

the result that the more complex scenes are actually those perceived and judged as such. Using 

eye-tracking methods, these previously conducted experiments also showed longer fixation 

times on visually more complex scenes. 

However, contrary to these previous results – and to our expectations – these hypotheses 

were not validated. Results show the lack of any significant relationship between subjective 

complexity and real complexity. It is the same for the relation between fixation time and real 

complexity. A link (although not significant) between perceived complexity and fixation time 

seems nevertheless to exist. This relationship is nonlinear. Finally a link, probably due to 

fatigue, is found between pattern and fixation time. 

Several explanations can be put forward to explain these results: 

• We may have missed power for this experiment, as its design did not allow to 

measure with precision the perceived complexity, whereas the expected relation was rather 

weak and therefore difficult to reveal (the correlation reported in other studies is around r = .5 

between actual and perceived complexity). 

• Contextual effects may have been skewing the perception of complexity. Such 

effects have been demonstrated in previous experiments. Indeed, the existence of a visual 

fatigue effect in our results confirm the importance of taking into consideration all the 

parameters in the environment likely to influence the visual performance of the subject. This 

question of ergonomy is extensively taken in account in studies on visual perception using eye 

tracking devices. 

• It is finally possible that the selected images were too close in terms of complexity, 

as suggested by the significant number images rated equally by the subjects (25%). 

• Finally, there is the ranking question: when a person rates two images as equivalent, 

the rank “4” disappears, which could also influence the results. Thus, according to the 

physiological laws on the differential threshold (the Weber-Fechner law), the discrimination 

between two images fairly close in complexity is made difficult. 

These results should therefore be considered with caution, and further research with a larger 

number of participants and an experimental protocol allowing more precision is strongly 

recommended. It would also be interesting to analyse further the eye tracking data. Indeed for 

a first exploration, measuring the fixation time is interesting, but it is not enough to make 

assumptions about the cognitive processing of complexity. Examining the totality of the eye 

movements (saccades and micro-saccades included) with an eye tracking data analysis software 

as Bigaze and focusing on the areas of interest “AOI” for the fixations might provide more 

information about the way complexity is evaluated. 

Finally, making comparisons according to the age of the participants and their level of 

experience (how much time they have been working on screen, screen size, type of scenes 

observed...) might allow us to get more convincing results. 
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