The Experience of the Internal Auditor in Reducing the Penetration of Computerized Data and its Effect on the Bank Continuity: Evidence from the Emerging Markets

Shaimaa Abdulazeez Sahib, Asaad Mohammed Ali Wahhab
College of Administration and Economics, University of Kerbala, Iraq
shaimaaaziz06@gmail.com, asaad.m@uokerbala.edu.iq

Abstract. This study aims to identify the challenges facing internal auditors in light of information technology, as well as measure the effect of the auditor's experience under information technology on reducing the penetration of computerized accounting data and provide practical solutions for internal auditors in Iraqi banks to develop their professional skills in light of information technology. To accomplish these objectives, a data collection instrument consisting of 211 questionnaires was designed and distributed to internal auditors at Iraqi banks listed on the Iraq Stock Exchange. Appropriate statistics in testing hypotheses led to the conclusion that banks are exposed to risks through data penetration in the presence of information technology, which affects their long-term success due to the internal auditor's lack of adequate experience in the field of computer and information technology.

Keywords. Experience of the Internal Auditor, Computerized Data, Bank

1. Introduction

Humanity witnessed unprecedented technical and technological advancements, resulting in a communications and corporate governance revolution. As a result of the political, technological, and economic changes of the last few decades, the world has become a veritable global village, necessitating corporate internal audits due to the rise in business risks, economic instability, and financial fraud scandals. To ensure the effectiveness of internal auditing, it is essential to identify the factors that influence it. As the effectiveness of internal auditing is influenced by several factors, previous research has employed a variety of methodologies to verify its efficacy. In addition, researchers have utilized distinct internal audit effectiveness factors and measurements. There has yet to be a consensus regarding the optimal framework for internal auditing effectiveness. It is a dynamic and highly contentious process, so an internal audit identifies systemic weaknesses and creates potential development opportunities. Therefore, businesses pursuing a suitable and effective quality management system must conduct internal audits to ensure the system operates as intended.

Moreover, experience enhances the auditor's ability to work, and the more the auditor performs the same job, the more proficiently and quickly he completes the work; the greater the number of tasks that a person performs, the more affluent and broader his practical experience, which
enables him to enhance performance; and experienced auditors have more insightful knowledge and vision and a better memory structure than inexperienced auditors, and the level of knowledge and insight increases with experience. Auditing so that the auditor's many ideas can influence his professional doubts; the auditor is responsible for detecting fraud that fraudsters will always attempt to conceal; and the internal audit profession confronts a challenge known as information technology. Information technology has posed an ongoing challenge to the internal auditing profession. Because they have made the world an open system constrained by communication technology and its risks in terms of software and application risks, connectivity risks, and breach risks, internal auditors of today must embrace the power of the data in their organization's computer systems if they wish to remain relevant in the era of "big data." Internal audit functions must recognize that they cannot remain static. Key assurance providers must continually rethink or redesign their audit methodologies to remain pertinent to their organizations and stakeholders. This study covers developments in information technology, the author's development, and the auditing method he employs by these developments. We should have seen these concepts addressed in previous studies that we could view.

2. BACKGROUND

Mugwira's (2022) study focused on applying bibliometric techniques and content analysis. This study provides a comprehensive overview of the research on Internet-related auditing technologies. The study by Supriadi et al. (2019) examined the phenomenon of the low quality of the electronic audit system in several entities, such as government agencies and private institutions; the study aims to analyze the extent to which the competencies of the auditor can aid in the successful implementation of the electronic audit system, and according to Bohrweg, (2021), it is difficult to determine the best approach to increase the efficiency of IT auditing. This study addresses the void by analyzing the factors that influence the effectiveness of IT audit support and extracting the most influential factors from the context of ADR, which heavily relies on IT audit support. The study concludes that auditors can now identify the most effective methods for enhancing the utilization and efficacy of IT support. Auditing of information technology A study was conducted, according to Polontalo et al. (2022), to demonstrate the impact of information technology on the auditor's experience in detecting fraud. Using a sample of 91 auditors working in public accounting firms in East Jakarta and registered with The Indonesian Institute of Certified Public Accountants in 2021, this study concluded that the auditor's experience has a positive and significant impact on using information technology and fraud detection. In contrast, Karlsen & Wallberg (2017) explored the effects of digitization on the tools and methods of the audit profession. This is accomplished through 14 semi-structured interviews with practicing auditors, from which it is concluded that the paperless working methods have a more significant impact on the auditors' working methods than on their instruments.

According to the study Boubaya, (2022), the current and future applications of artificial intelligence technologies in auditing were highlighted by providing an overview of artificial intelligence and its branches, how to employ them, and how artificial intelligence technologies alter future auditing procedures. According to the study, human intelligence will always be required to operate, perform technology, and interpret and analyze data collected by artificial intelligence techniques. In contrast, the study by Zunaedi et al. (2022) in this study addressed the evolution toward a higher level of risk-based auditing; it was described as extremely necessary, and internal auditors will play a crucial role in risk management. Implementing effective risk management is critical to the company's success and longevity.

2. Literature Review
2.1 The internal auditor and information risks
Auditing reduces the information risk for users of financial statements to an acceptable level. Multiple duties performed by auditors are designed to reduce audit risk. They acquire data meticulously and evaluate financial statement assertions. When there is negative information, they also ensure that the financial statements are examined appropriately. Internal auditing can reduce the risk of material misstatement and, consequently, audit risk. Salehi et al., (2020). In addition, auditing is a systematic process for obtaining objectively evaluated and identified information to determine compliance with applicable standards and for communicating the results to interested parties. Chauke, (2021). Internal audit is an activity that seeks to add value and improve the organization's performance, and these activities can help the organization achieve its goals through a strategic approach. An organization's risk management, control, and governance processes will be enhanced and evaluated by providing independent, objective advice and assurance. Handoyo et al. (2021); Ajao & Victory views it as the process decided upon, implemented, and developed by those responsible for governance, management, and employee development to provide reasonable assurance about achieving the company's objectives regarding information security. The accuracy of financial reports, the efficacy and efficiency of operations, and compliance with applicable laws and regulations, Almahuzi (2020). It is also an internal management control activity performed by an employee as a service to management. Directly reports to the board of directors or the management team. Seyoum, (2021). In addition, due to the evolution of commercial initiatives, internal auditing is no longer a means of preserving liquidity. Effective internal auditing is crucial for any organization because it contributes to implementing policies and goals. Tamimi, (2021); it has become a department within a company or organization alongside other departments, and as work in this field has progressed, the internal audit function has expanded to include all departments. Numerous audit categories include risk assessments, compliance reviews, operational audits, etc. He contributes significantly to the corporate environment in which he works. Lastianti et al. (2018), as systems, transactions, and processes became more complex; auditors were required to improve their performance to meet these challenges, Gebru et al., (2021).

2.2 Internal audit quality
The integrity of internal audits is the foundation for the organization's global survival and growth. It is essential for the organization's survival because it aids in maintaining adequate controls and preventing fraud. It is widely acknowledged that quality is a crucial aspect of an effective internal audit, upon which the quality of financial reports depends. There is a need for professional experience in implementing control processes for internal auditing, Kai et al., (2022), which is a developed evaluation function implemented by a professional with an in-depth understanding of the organization's operational systems and activities to ensure that the organization's operational activities operate efficiently and effectively and that its goals and objectives are met. Mulyadi et al., (2019). Professionalism is the capacity, based on a high level of knowledge and specialized training, to think creatively and execute tasks according to the area of expertise. Professionalism is essential to auditing, particularly for individual auditors. As administrators, auditors will serve the organization and its stakeholders to the best of their abilities, and professionalism positively impacts audit quality. To increase audit quality, the auditor must act professionally throughout the auditing process; the more professional the auditor, Jatiningsih & Purwaningtyas (2019), The higher the audit quality. Figure 1 depicts the factors that impact the quality of internal auditing.
2.3 Experience of the internal audit

Experience is a process of learning and adding prospective developmental behaviors from formal and informal education, or it can be interpreted as a process that leads to a more advanced pattern of behavior. Psychologically, the experience will shape a person's personality, making them wiser in reasoning and actions. As a result, experienced auditors can provide higher-quality audits than inexperienced auditors. Kertarajasa et al. (2019), And that a financial expert is a person who has acquired education and experience as a general accountant, auditor, chief financial officer, financial controller, or chief accounting officer for an organization or has experience through an understanding of generally accepted accounting principles and financial statements as well as experience In preparing or auditing financial statements Chen et al., (2018), and that the professional person has an in-depth understanding of accounting principles and financial statements. Mulyadi et al. (2019), Moreover, internal audit activities include control and governance processes and risk management implemented using a consultative approach, emphasizing process effectiveness and efficiency. Consequently, the modern practice of internal auditing requires the auditor to have extensive experience. And according to Internal Audit Standard 1210 Trivunac, (2019)Professional experience in auditing is gained through work practices conducted under the supervision of a senior auditor Setyana et al., (2021). As organizations become more global and their operations become larger and more complex, they face various challenges Krane & Eulerich (2020); the auditor requires extensive knowledge to determine how and why the error occurred. Sunyoto, (2020), In work relationships, the capacity to learn from experience, whether positive or negative, is crucial. Therefore, experience is the comprehension of what is lived, experienced, and practiced, as well as the skills or values incorporated with the individual's potential Ilksyaniyah et al. (2021). Experience, high integrity and objectivity, Proficiency, professional accuracy, and adherence to the Code of Ethics are necessary for audit activities. Highly experienced auditors will vary in their presentation and response to information acquired during the examination and their presentation of audit conclusions regarding the examined object Hardianti et al., (2022).
2.4 The intelligence of the internal auditor and computerized systems

Organizational intelligence is the ability and potential of an organization to create knowledge and apply strategies to adapt to its environment, including the use of technology and organizational intelligence to provide helpful information for decision-making, streamline operations, and achieve the organization's objective. The internal audit intelligence directive is defined as the organization's capacity to plan, solve problems, think freely, innovate, learn, and use technology to evaluate and improve the effectiveness of risk management, control, and operations for the decision-making process Klinsukhon et al., (2018), accounting in general, and auditing. They are perturbed by recent advances in information technology and stand to gain substantially from their implementations. New and intelligent technologies are causing significant changes in the auditor's function and profession, resulting in the development of tools capable of analyzing complex enterprise data. Auditors must deal with a large volume of data and are frequently under time constraints to gain financial and non-financial performance insights. Lamboglia & Lavorato (2020) The rapid pace of technological change over the past decade has significantly impacted business organizations worldwide, and these changes have significant implications for accounting and auditing professionals. As most organizations have incorporated information technology, the auditor must determine if strategic computer information systems expertise is required for the audit. Thottoli & K.V., (2020)

2.5 Electronic Audit and internal audit practices

Information technology refers to computer system software and hardware components that enable support and sustainability in an organization's operation, administration, and strategy and can facilitate collaborative networks between businesses, suppliers, and beneficiaries. Sundram et al. (2020) And that the introduction of technology into business leads to the rapid circulation of information within the organization, thereby aiding in the making of sound decisions, liberates the human element from the constraints of routine work, allowing for creative and intellectual work, as well as a change in work methods. Modern technology enables remote work and guidance, reflected in both time and cost factors, thereby elevating the significance of information confidentiality and dependability Almasri et al., (2018). Even though electronic auditing is implementing all types of systems, information technology is used to aid auditors in planning, monitoring, and documenting audit work throughout the various audit phases. Alsharairi & Alhosban, (2019) as well as a collection of instruments that aid in receiving, processing, and retrieving information in the form of text, audio, image, or video using a computer, including a computer, printer, CDs, and networks. And many additional utilities. According to Purnamasari et al. (2022), internal auditors utilize a systematic audit program that includes the development of an audit strategy through audit planning. This audit strategy assists the auditor in identifying risk areas, resolving potential problems promptly, and identifying changes in depth. In an environment subject to scrutiny in the digital era, fundamental errors can be reduced by enforcing the institution's internal controls and controlling or reducing fraud. Apandi et al. (2022)

2.6 Business Continuity and Technological Challenges

Business continuity is a business philosophy encompassing the processes, procedures, decisions, and activities that guarantee an organization's continued operation. It includes planning to help prevent operational outages, crises, and environmental changes and assist the organization in returning swiftly to the business if any of these events occur. İrkey & Tüfekçi (2021), business continuity is essential to the organization's long-term viability in the current
competitive business environment. Numerous institutions have provided standards for the design, development, and publication of business continuity plans for a very long time, and the company must conduct periodic reviews of its requirements and standards. Alharthi & Khalifa (2019) Due to the proliferation of computer systems, businesses have recovered from business continuity risks and shifted their focus to Information technology and the associated risks. Schmid et al. (2021) argue that continuity is one of the few underlying assumptions of accounting theory. The assumption of continuity reflects the expectations of all parties concerned in the enterprise’s business, considering the possibility of liquidation or cessation of operations. Wahhab et al. (2022), The concept of continuity has received considerable attention in recent accounting work since the Cadbury Committee's corporate governance regulations regarding continuity and reporting. Effiong et al. (2020) Entrepreneurs are deemed successful if they can operate their business continuously and consistently or if they do not cease operations shortly. Apriyanti (2020)

Risk management is a method for identifying threats. Managers must comprehend the impact of hazards on the organization and whether the impact will result in a direct loss. Walsh, (2021), e-commerce has become a potent catalyst for economic growth in the emerging global economy. Considering the significance of electronic business, which uses information and communication systems, Eltweri et al. (2020) identify potential misrepresentations and design controls to prevent or promptly detect misrepresentations. According to Thao (2018), all businesses are vulnerable to cyberattacks because they rely so heavily on system information to carry out their production processes. Consequently, cybersecurity risk assessment involves the identification, management, and control of risks. Risk management is integral to any enterprise-wide strategy to minimize costly security incidents and avoid compliance issues. Sabillon, (2022), Risk response requirements are a factor in developing sustainability policies and business management goals. Risk analysis aims to identify and evaluate potential risks and their impact on the organization. The purpose of evaluating the risk assessment is to examine the business continuity strategy. Khalifa (2021).

3. Methodology
3.1 Applied study methodology and Tools.
A questionnaire was designed to test research hypotheses on the applied side of the study. It consisted of three axes: the first axis consisted of fifteen questions that measured the internal auditor's experience in the context of information technology, and the second axis consisted of eight questions that measured the internal auditor's experience in information technology. Reducing the penetration of computerized accounting data, the third axis consisted of ten queries to gauge the company's continuity. It was used to express the five dimensions of the five-point Likert scale, whose measurements range from one content point (completely disagree) to five content points (fully concur).

3.2 The Importance of Studying
The applied importance of the study is represented by drawing the attention of higher management to the importance of developing the expertise of the internal auditor in Iraqi companies in light of information technology to reduce the penetration of computerized accounting data and preserve the company's reputation and continuity.
3.3 The Study's Objective.
The current study aims to accomplish the following goals:
- Identify the challenges internal auditors face as a result of information technology.
- Assessing the influence of the auditor's experience in light of information technology on the reduction of computerized accounting data penetration.
- Providing internal auditors in Iraqi banks with solutions to develop their professional abilities in light of information technology.

3.4 The Study Problem.
As a result of the rapid development in a world dominated by digital technology, internal auditors face several challenges today. For instance, computerized accounting software development companies seek to develop their methods in response to the challenges that financial data hackers seek to develop their unethical methods to harm the interests of these companies, either to blackmail them or for entertainment and hobbies. Auditors must develop the skills necessary to identify the gaps in the company's computerized electronic systems and to collaborate with the electronic information systems team to improve the company's systems and safeguard information security to ensure the company's survival. Based on the preceding, the following research queries can be formulated:
1. What are the most significant challenges facing internal auditors considering information technology?
2. How does the internal auditor's experience affect the penetration of computerized accounting data considering information technology?
3. What role does the internal auditor's experience play in reducing the penetration of computerized accounting data and its influence on the company's continuity in light of information technology?

3.5 Study Hypotheses
The current study is founded on the following hypotheses, which were derived from the questions posed in the study's problems:
1. There is no statistically significant effect of the internal auditor's experience in light of information technology on reducing computerized accounting data penetration.
2. There is no statistically significant impact of the internal auditor's experience in the context of information technology on the business's continuity.
3. Decreasing computerized data penetration has no statistically significant impact on the company's viability.

4. Results
After completing the sample description, the researchers calculated the Cronbach alpha coefficients using the SPSS program to guarantee the scale's stability. From a statistical standpoint, the stability coefficients for all questionnaire dimensions ranged between 87.2 and 94.7, which are extremely high values. The rate of stability is 70% acceptable.
We also calculated the stability coefficients using the split-half reliability, and the results were as shown in Table 1:
Table 1: split-half reliability to test the stability of the questionnaire.

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Guttman or Spearman-Brown</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Experience of the internal auditor in the light of information technology</td>
<td>%86.2</td>
</tr>
<tr>
<td>2</td>
<td>Hacking computerized accounting data</td>
<td>%86.5</td>
</tr>
<tr>
<td>3</td>
<td>Bank continuity</td>
<td>%85.8</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>%89.3</td>
</tr>
</tbody>
</table>

The internal consistency between each dimension of the questionnaire and its constituent questions was measured using the Pearson correlation coefficient, and the results were according to the SPSS program as follows:

Table 2: The internal consistency of the paragraphs of the auditor’s experience axis in light of information technology

<table>
<thead>
<tr>
<th>Correlations</th>
<th>N</th>
<th>Sig. (2-tailed)</th>
<th>Pearson Correlation</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>211</td>
<td>.000</td>
<td>.536**</td>
<td>x1</td>
</tr>
<tr>
<td></td>
<td>211</td>
<td>.000</td>
<td>.653**</td>
<td>x2</td>
</tr>
<tr>
<td></td>
<td>211</td>
<td>.000</td>
<td>.654**</td>
<td>x3</td>
</tr>
<tr>
<td></td>
<td>211</td>
<td>.000</td>
<td>.674**</td>
<td>x4</td>
</tr>
<tr>
<td></td>
<td>211</td>
<td>.000</td>
<td>.740**</td>
<td>x5</td>
</tr>
<tr>
<td></td>
<td>211</td>
<td>.000</td>
<td>.734**</td>
<td>x6</td>
</tr>
<tr>
<td></td>
<td>211</td>
<td>.000</td>
<td>.717**</td>
<td>x7</td>
</tr>
<tr>
<td></td>
<td>211</td>
<td>.000</td>
<td>.728**</td>
<td>x8</td>
</tr>
<tr>
<td></td>
<td>211</td>
<td>.000</td>
<td>.742**</td>
<td>x9</td>
</tr>
<tr>
<td></td>
<td>211</td>
<td>.000</td>
<td>.729**</td>
<td>x10</td>
</tr>
<tr>
<td></td>
<td>211</td>
<td>.000</td>
<td>.682**</td>
<td>x11</td>
</tr>
</tbody>
</table>

1 The reliability of the Pearson correlation coefficient fluctuates between positive and negative values. The positive sign indicates a direct relationship, whereas the negative sign indicates an inverse relationship. The closer the value of the correlation coefficient is to a positive or negative one, the stronger the correlation, and the closer it is to zero, the weaker the correlation—weak link.
All correlation coefficients between the first axis (auditor experience in the context of information technology) and its questions had high values and were statistically significant, as all Sig. (2-tailed) values were less than 0.05. All of these values were positive, indicating a direct relationship between each paragraph and the dimension to which it pertains and a high degree of internal consistency among the paragraphs comprising that axis.

Table 3: Internal consistency of computerized data penetration hub paragraphs

<table>
<thead>
<tr>
<th>Item</th>
<th>Pearson Correlation</th>
<th>Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>.747**</td>
<td>.000</td>
</tr>
<tr>
<td>x2</td>
<td>.729**</td>
<td>.000</td>
</tr>
<tr>
<td>x3</td>
<td>.703**</td>
<td>.000</td>
</tr>
<tr>
<td>x4</td>
<td>.732**</td>
<td>.000</td>
</tr>
</tbody>
</table>

* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).

All correlation coefficients between the second axis (computerized data penetration) and its constituent questions were high and statistically significant, as evidenced by all values of Sig. (2-tailed) were less than 0.05. All of these values were positive, indicating a direct relationship between each paragraph and the dimension to which it pertains and a high degree of internal consistency among the paragraphs comprising that axis.

Table 4: The internal consistency of the paragraphs of the continuity of the bank

<table>
<thead>
<tr>
<th>Item</th>
<th>Pearson Correlation</th>
<th>Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>.717**</td>
<td>.000</td>
</tr>
<tr>
<td>x2</td>
<td>.762**</td>
<td>.000</td>
</tr>
<tr>
<td>x3</td>
<td>.802**</td>
<td>.000</td>
</tr>
</tbody>
</table>

* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).
Due to the application of international auditing standards, all questions achieved positive and statistically significant correlation coefficients between 1 and 5 percent, except question 20. It will be excluded from future analyses because its relationship to the dimension was insignificant.

It is evident from the table above that all of Cronbach's alpha values fall within the statistically acceptable range, assuring the scale’s stability.

4.1 Test the normal distribution of the data.

The normality test was used based on the idea that the subject data were spread out commonly. If typical methods are used on data that doesn't follow a normal distribution, then the test results can't be trusted Field (2009).

Even though statisticians said that researchers don't need to worry about the normal distribution of data if they use a large sample relative to the study population Field (2009), we were worried about the accuracy of the research results, so we ran the Kolmogorov-Smirnov test, which is one of the most rigorous tests for the normal distribution of data, on the data from the questionnaire. The results of the standard distribution test for the study variables are shown in Table 5.

Table 5: Examine the normality of the research variables' data distribution.

<table>
<thead>
<tr>
<th>No.</th>
<th>Dimensions</th>
<th>Kolmogorov-Smirnov</th>
<th>Significance level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The Implicit Theory of Intelligence</td>
<td>0.074</td>
<td>0.173</td>
</tr>
<tr>
<td>2</td>
<td>The auditor's ability to assess risks</td>
<td>0.081</td>
<td>0.061</td>
</tr>
</tbody>
</table>

All correlation coefficients between the third axis (continuity of the company) and its co the test's significance level was greater than 5%, which is the acceptable level, it can be concluded that the data have a normal distribution, making a direct relationship between each paragraph and the dimension to which it pertains as well as a high degree of internal consistency among the paragraphs comprising that axis.

4.2 Test the Study Hypotheses.

The first hypothesis: There is no statistically significant effect of the internal auditor's experience considering information technology on reducing computerized accounting data penetration.
To test this hypothesis, the following model of "linear regression" was developed:

\[\text{GCAD} = B_0 + B_1 \text{AEUIT} + \epsilon \]

where:
- \(\text{AEUIT} \) = the independent variable (the experience of the internal auditor in light of information technology);
- \(\text{GCAD} \) = the dependent variable (the reduction of the penetration of computerized accounting data); and
- \(\epsilon \) = the intermediate variable (reducing the penetration of computerized accounting data).

\(B_0 \) = Estimation errors equal the constant in the regression equation that represents the dependent variable's value when the independent variable's value equals zero.

\(B_1 \) = The slope of the regression function assesses the relationship between the independent and dependent variables.

Moreover, using the SPSS statistical program, the following results were obtained:

Table 6: Summary of the first hypothesis test form

<table>
<thead>
<tr>
<th>Model Summary(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

\(^a\) Predictors: (Constant), AEUIT

\(^b\) Dependent Variable: GCAD

The above table shows that the correlation (R) between the variables amounted to 0.661, a high-strength value. The coefficient of determination, R Square, amounted to 0.437, representing the "explanatory power" of the model used. That is, the independent variable (auditor's experience in the light of information technology) explains its value of 43.7% of the intermediate variable (limiting data penetration), and the standard deviation of the estimated error was 538.0, which is a deficient number. The lower this type of error, the better it is statistically.

Table 7: Variation test of the first hypothesis

<table>
<thead>
<tr>
<th>ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
The table above shows the above variation ANOVA. The calculated value of F amounted to 162.310, which is more significant than its tabular value calculated according to degrees of freedom of (209.1), which amounts to 3.94 at the 5% significance level. The significance level of the Sig test amounted to 0.000, which is less than the acceptable error value in science predetermined by 0.05, which indicates the suitability of the statistical model used to test the hypothesis.

Table 8: The regression function coefficients for the first hypothesis

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>.582</td>
<td>.253</td>
<td>2.295</td>
</tr>
<tr>
<td>AEUIT</td>
<td>.794</td>
<td>.062</td>
<td>.661</td>
<td>12.740</td>
</tr>
</tbody>
</table>

The above table shows that the value of the constant of the regression equation was 0.582 and that the value of the slope of the regression equation was 0.794, which shows the effect of the independent variable on the mediating variable (by coefficient B). The positive value of the coefficient indicates that there is a direct effect between the two independent variables and the mediator, or, in other words, that any increase in the independent variable (the auditor’s experience with information technology) by one degree leads to an increase of 79.4% in the mediating variable (reducing computerized data penetration) with all other independent variables held constant. It is also noted that the level of significance of the T statistic for the independent variable amounted to 0.00, which is much less than the accepted error in social sciences, which was previously determined by 0.05, and this means that the sample data provided convincing evidence for rejecting the null hypothesis and accepting the alternative hypothesis to prove the effect statistically. They have had computerized data breaches.

The regression equation that was adopted in testing the hypothesis can be reformulated in light of the results that have been reached, which can be used for prediction in the following way:

\[GCAD = 0.582 + 0.792 \times AEUIT + \epsilon \]

The following figure displays the frequency histogram, which shows the normal distribution of the statistical residuals of the regression equation and the accuracy of the previous regression equation.
The following figure shows the fulfillment of the regression analysis test conditions graphically, which shows the distribution of points around the straight line, and this proves that the statistical residuals follow the normal distribution.

Figure 3: Normal distribution for the remainder of the first hypothesis
The second hypothesis: There is no statistically significant impact of the internal auditor's experience in the context of information technology on the business's continuity.

To test this hypothesis, the following "linear regression" model was formulated:

\[FGC = B_0 + B_1 \cdot AEUIT + \varepsilon \]

where:
- \(FGC \) = dependent variable (continuity of the bank)

And using the SPSS statistical program, the results were as follows:

Table 9: Summary of the second hypothesis test form

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.754</td>
<td>.568</td>
<td>.566</td>
<td>.428</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), AEUIT
b. Dependent Variable: FGC

The above table shows that the correlation (R) between the variables amounted to 0.754, a high-strength value. The coefficient of determination, R Square, amounted to 0.568, representing the "explanatory power" of the model used. That is, the independent variable (the auditor's experience in the light of information technology) explains what its value is 56.8% of the variation in the dependent variable (continuity of the bank), and the Std. Error of the Estimate was 428.0, which is a deficient number, and the lower this type of error, the better it is statistically.

Table 10: Regression coefficients for the second hypothesis

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>B</td>
<td>Std. Error</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>.675</td>
</tr>
<tr>
<td></td>
<td>AEUIT</td>
<td>.822</td>
</tr>
</tbody>
</table>

The table above shows that the value of the regression equation constant was 0.675. The slope of the regression equation was 0.822, which shows the effect of the independent variable on the dependent variable (by coefficient B). The positive value of the coefficient indicates that there is a direct effect between the independent and dependent variables, or in other words, that any increase in the independent variable (the auditor's experience with information technology) by one degree leads to an increase of 82.2% in the dependent variable (continuity of the bank) with all other independent variables remaining constant. It is also noted from the above table that the significance level of the T-statistic for the independent variable...
amounted to 0.00, much less than the predetermined accepted error in the social sciences of 0.05. This means that the sample data provided convincing evidence for rejecting the null hypothesis and accepting the alternative hypothesis to prove the effect statistically. Thus, there is a statistically significant effect of the auditor's experience in the light of information technology on the bank's continuity.

The regression equation that was adopted in testing the hypothesis can be reformulated in the light of the results that have been reached, which can be used for prediction in the following way:

\[FGC = 0.675 + 0.822 \times AEUIT + \varepsilon \]

The figure below presents the histogram, which shows the normal distribution of the statistical residuals of the regression equation and the accuracy of the previous regression equation.

Figure 4: Histograms of second hypothesis residuals

Following is a graphical representation of the fulfillment of the regression analysis test conditions, which illustrates the distribution of points around the straight line and demonstrates that the statistical residuals adhere to the normal distribution.
Third hypothesis: Decreasing computerized data penetration has no statistically significant impact on the company's viability.
To test this hypothesis, the following model of "linear regression" was developed:

$$FGC = B_0 + B_1 \text{GCAD} + \varepsilon$$

Moreover, using the SPSS statistical program, the results were as follows:

Table 11: regression coefficients for the third hypothesis

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Constant)</td>
<td>1.759</td>
<td>.184</td>
<td>9.567</td>
<td>.000</td>
</tr>
<tr>
<td>B</td>
<td>1.759</td>
<td>.184</td>
<td>.648</td>
<td>9.567</td>
<td>.000</td>
</tr>
<tr>
<td>Std. Error</td>
<td>.048</td>
<td>.648</td>
<td>12.303</td>
<td>.000</td>
<td></td>
</tr>
</tbody>
</table>

The table of regression function coefficients reveals that the constant of the regression equation was 1.759. The slope value of the regression equation was 0.589, indicating the effect of the intermediate variable on the dependent variable (as represented by coefficient B). The positive value of the coefficient indicates that there is a direct relationship between the medium and dependent variables; that is, a one-degree increase in the middle variable (decreasing computerized data penetration) results in a 58.9% increase in the dependent variable (continuity of the bank), assuming all other independent variables are held constant. In addition, the
significance level of the T-statistic for the independent variable was 0.00, as shown in the table above. It is significantly less than the predetermined accepted error 0.05 in the social sciences. It indicates that the sample data has provided compelling evidence for rejecting the null hypothesis and accepting the alternative view to demonstrate the effect statistically. Therefore, reducing the penetration of computerized data has a statistically significant impact on the bank’s continuity.

The regression equation used to test the hypothesis can be reformulated considering the results, which can be used for prediction as described below.

$$\text{FGC} = 1.759 + 0.589 \times \text{GCAD} + \epsilon$$

The figure below shows the frequency histogram, which shows the normal distribution of the statistical residuals of the regression equation and the accuracy of the previous regression equation.

![Histogram](image)

Figure 6: Histograms of the third hypothesis residuals

Following is a graphical representation of the fulfillment of the regression analysis test conditions, which illustrates the distribution of points around the straight line and demonstrates that the statistical residuals adhere to the normal distribution.
5. Conclusion

The researcher believes that the internal commentators provide accounting representatives with an appropriate position in their companies (2004) and experience in the processes that play an essential role in ensuring the objective achievement of organizations, and the contribution of research within organizations to an objective investigation of the organization BADARA & SAIDIN, 2019, must understand how In the internal audit properly and to be careful in the internal audit. Usman, (2016) It is expected that the assessment within the bank will achieve the identification of internal migration that can lead to the possibility of its occurrence in any possible result of its impact, to ensure that the policies of continuity are updated regularly to be in line with the proposed changes in the business profile in the field of technology and information technology for many Of the information on trade integration in the Pacific is an excellent internal chart that is constantly followed and evaluated, and that the role of gradation in banks is essential, and the cooperation of other activities, within, and within, and linked to each other. Organization or in which you work. Furthermore, based on the results reached in presenting the literature on banks in general and private banks in particular in them, as a result, as a result of the accelerated technological developments, which led to the establishment of internal auditors in the field of electronic accounting systems and cybersecurity to meet these challenges, as a result of hacking their data. Through continuous training and local staff in particular.

References

