Technium
48/2023

2023
A new decade for social changes

Technium
Social Sciences
Leading in the Digital Era: An MSc Program for Industry 4.0

Antonia Stefani¹,², Bill Vassiliadis¹,², Nikos Ntaliakouras¹, Gerasimos Vonitsanos¹,²

¹DAISSy Research Group, Hellenic Open University, Greece, ²Department of Management Science and Technology, University of Patras, Greece

astefani@upatras.gr

Abstract. In this paper, a new curriculum for an MSc programme is presented. The program is designed to equip students with a deep understanding of the dynamic interplay among automation, data exchange, cloud computing, cyber-physical systems, and the Internet of Things, among other vital components. The curriculum's multifaceted nature ensures that graduates possess the critical thinking, strategic foresight, and interdisciplinary skills essential for leadership in this domain. Social, pedagogical and delivery issues and challenges are discussed.

Keywords. Industry 4.0, Curriculum Design, Digital Transformation, E-Commerce

1. Introduction

Industry 4.0 was heralded a few years ago as a revolutionary model for industry and the world of work. As the hype slowed down and the actual consequences of humans working in a cyber-physical environment began to be analysed, the attention of both the academia and the business world increased. Industry 4.0 introduces a new technological approach and fundamentally changes how businesses function, the workforce operates and manages ethics. It challenges hierarchies and transforms the nature of work by promoting more collaborative and decentralized decision-making processes. These developments are expected to affect businesses and society, increasing interest in technological and social research [1].

As a result of cultural and social shifts introduced by Industry 4.0, new preferences are emerging about education and skills development, primarily in the labour market. A pressing problem to be addressed is to fill the opening gap between the need (and the capability) of businesses to adopt Industry 4.0 and the low readiness of the educational sector to provide industry-ready graduates [2]. Academic programmes in higher education institutions need to be reinforced to prepare students to cope with the technological diversities of the field and the practical implications of applying these technologies to existing production and business models. To this end, the soil is fertile in countries with a high digitalisation maturity since as much as 14% of global GDP gains towards 2030 may be attributed to digitalisation and intelligent automation. However, the educational sector is not yet ready to produce Industry 4.0-ready graduates. Several critical educational challenges are ahead [3].

Industry 4.0 educational programmes are necessary to address various target groups. Requirements may originate from higher education, the Industry (focusing on four specific
The local and regional Government bodies and other structures relevant to promoting the use of advanced technology for modernizing local economies. Industry 4.0 requires an educational reform emphasising the development of scientific and mathematical abilities and cognitive skills such as complex problem-solving, socio-behavioural skills and reasoning, a basic need for post-graduate students. Furthermore, academic staff also needs to stay tuned with the industry through in-depth collaboration with the industry [4,5]. Upskilling the existing workforce, which is in crucial need to develop complementary skills to become Industry 4.0 workers, is also important. There is a need to benefit from the evolving technological context and utilize the associated machines and equipment. Workers in the manufacturing sectors need to complement their basic education skills with lifelong learning that can encourage them to stay engaged and participate in evolving labour markets [6,7]. In this context, urgent action is required to develop a comprehensive approach to education that addresses the needs of Industry 4.0 and equips graduates with the necessary skills to succeed in an evolving landscape [8,9].

Based on the previously described status and motivating factors, this paper describes the basic components of an MSc programme in Industry 4.0. Considering the multidisciplinary nature of Industry 4.0, the programme is designed to have an inherent multidisciplinary combining a range of technological sectors with application fields of high importance. The MSc’s structure thus encompasses core courses to provide fundamental technological knowledge of Industry 4.0, which will serve as the foundation for orientation courses that specialise in vertical and horizontal value-creation chains of four key industries: Manufacturing, Agriculture, Aquaculture and Pervasive Health. To provide an enhanced learning experience and provide students with the opportunity to see how strict academic and theoretical concepts relate to real-life scenarios and situations, the courses follow a STEM 4.0 approach that takes advantage of science, technology, engineering and mathematics and their associated practices to create a student-centred learning environment. Leveraging project-based learning, students can investigate and engineer solutions to real problems and construct evidence-based technological solutions. The programme’s methodology undertakes an inclusive approach that is based on establishing Communities of Practice, in which participate are students, teachers, school consultants, researchers, industry representatives, policymakers, etc. STEM 4.0 offers a holistic educational approach that fosters an understanding of scientific knowledge and leads to the development of adequate skills to follow a career in Industry 4.0. The paper also focuses on the social implications of such a program. Emphasis is given to the socio-ethical dimensions of teaching humans working with machines (either tangible or intangible) in a cyber-physical environment.

2. Overview

2.1 Programme concept and aims

The Industry 4.0 Master’s degree aims to train Theoretical, Natural, Engineering, Computer Science, and Information Technologies graduates to address the new challenges posed by the ever-increasing globalisation in production, manufacturing, and service provision. These challenges are primarily rooted in technological know-how and a high degree of automation using modern production paradigms incorporating individuality, flexibility, and reconfigurability. The growing interconnectedness and rise in cooperation between man and machine change how products are produced and lead to new products and services. These challenges are met by the increasingly complex interconnections between machines, raw workpieces, finished products, transport units, and computers made possible by the Internet of

In this context, the Master's Programme encompasses the different sources of knowledge and experience required by Industry 4.0. It combines the diversity of expertise of leading European Universities. It offers education oriented to a multi-disciplinary understanding through experts from complementary fields in a research-oriented environment with close cooperation with the industry.

The program is structured to provide fundamental knowledge of the discipline (core courses) and specialisation (orientation courses) for vertical and horizontal value-creation chains of four key industries: Manufacturing, Agriculture, Aquaculture, and Pervasive Health. These are the main objectives of the program.

The program lasts 18 months for full-time and 24 months for part-time students. Courses are arranged as a mix of theory and application in project-led education using a blended mode of delivery (face-to-face and distance learning training). Placements at key industrial players are also offered as an option at the later stages of the program. Students also can perform research by writing a dissertation that will help them further develop the critical skills needed for a career in Industry 4.0. The program is designed in such a methodology that its goals and outcomes are smart. This means the program's purpose is Specific, Measurable, Achievable, Relevant, and Time-bound. Specific means to determine with clarity and accuracy the desired result, measurable in the sense that it can be ascertained the achievement of the goal after the end of the program, achievable based on the structure and resources of the program, relevant to the general purpose and other objectives, and finally time-bound, in the sense that the specific targeting is not ambitious and beyond time limits of educational intervention. As already mentioned, the goals are formulated at three levels: knowledge, skills, and attitudes, or, in any case, receive the expected results in terms of knowledge, qualities, abilities, attitudes, and behaviours.

2.2 The learning outcomes of the programme
The primary learning outcomes of this program can be summarised in the following list:

- to learn the principles of digitalisation and enabling technologies that lead to what is known as Industry 4.0,
- to understand the drivers and enablers of Industry 4.0,
- to learn the principles of Smart Factories, Smart cities, intelligent products, and intelligent services,
- to understand the role of data, information, knowledge, and collaboration in future organisations,
- to learn technologies and tools for applying IoT in processes and services,
- to learn how these technologies can make processes faster, increase productivity, and improve the efficiency of industrial organisations,
- to create ecosystems for improvement and innovation with clients, suppliers, technology partners, and other stakeholders,
- to incorporate new strategic tools into business models,
- to implement a project for the digital transformation process in Manufacturing, Agriculture, Aquaculture, and Health.

Additionally, the program trains students to acquire communication skills via project and practical work. Furthermore, the need for research on innovative products and services
improves students' entrepreneurship and enterprise skills, and their intellectual property awareness is enhanced. The curriculum and structure educate students on sustainable development, think critically and effectively, and be more creative and collaborative, especially in problem-solving. Therefore, the main goal is to prepare the future workforce for all the aspects of the new industrial revolution named Industry 4.0.

2.3 Social implications of Industry 4.0 programmes

Industry 4.0 educational programs, such as the one discussed in this work, respond to, and may have far-reaching social implications, primarily in the world of work, labour ethics, and man-machine interaction modes of collaboration in and outside the workplace, just to mention a few. Countries with highly advanced educational sectors can strengthen the link between the manufacturing industry and the educational system. This need will be met mainly by the advanced, apprenticeship-focused curricula of the programme. This feature will bring together the academic and professional worlds to share knowledge and practices and test processes to find innovative ways to address the gap problem. They will also help advance the theory and practice in Industry 4.0-related topics through high-quality research and learning. Both target groups will be able to develop excellent transversal leadership skills, reflective practice, and entrepreneurial mindsets, equipping them to adapt to continuous change in national labour markets.

Achieving economy of scale is another advantage of programmes such as the MSc in Industry 4.0 since they help produce and share resources and ideas and form policies by involving policy-makers and relevant stakeholders with academics. The gap between industry and education will be reduced by actively supporting the exchange of good practices between academics, students and practitioners at National and Regional levels.

Furthermore, due to many stakeholders' need for more resources, they will maximize asset utilization in the industry and more flexibility and innovation in higher education so that young people can adapt to changing labour markets. Universities will also gain concrete insight into designing and managing future skills in MSc programmes and be able to shape policy in their countries.

The CPI 4.0 will meet the need for developing new training models as the government has been unable to provide sufficient quality and quantity training for the labour market.

The educational and manufacturing sectors will benefit from the expected results by creating new opportunities for innovation and growth. Data gathered through intelligent products and services can enable a deeper understanding of how Industry 4.0 can help specific industrial sectors.

Promoting an economy of scale as far as Industry 4.0 research resources and knowledge repositories are concerned will be reinforced in markets that are usually highly fragmented, with local SMEs accounting for more than 80% of the total labour force. These SMEs have limited technological readiness and an underdeveloped cold-chain infrastructure nationwide.

The curriculum will help battle the great risk of marginalisation for a significant part of the workforce due to the introduction of automation to the industry. The long-term results of the programme's application will hopefully serve as a turning point that will not only see endangered jobs being replaced but also serve the ever-increasing demand for higher-skill workers with R&D and Industry 4.0 capabilities.

Regarding the educational shift, programmes such as the MSc in Industry 4.0 will help serve the technical competencies, communication, collaboration, critical thinking, and creativity requirements. Hopefully, they will push the much-needed shift from teacher-centred
learning towards a student-centred approach. Problem-based learning, a flipped classroom, and curriculum design will be the tools to help improve learning outcomes and better prepare people for continuous learning in the 4.0 world of work.

With the emphasis on remote and online learning modules, there is also a potential decrease in face-to-face social interactions. This could somewhat affect the social fabric, possibly leading to isolated communities and a possible reduction in collaborative and teamwork skills.

3. Programme design methodology

3.1 Methodological principles

The design and development of the curriculum was part of a greater effort to provide practical solutions to help close the gap between industry expectations and educational system’s outputs about Industry 4.0. It proposed a methodology for designing MSc Curricula that promotes a shift from degree-focused to competence-based qualification. In this context, the consortium will transfer significant know-how mainly from the European Educational System that could be used to design an advanced, practical-based MSc Curriculum for Industry 4.0.

More specifically, this effort aimed to develop new specialized curricula and an innovative MSc programme on Industry 4.0, thus helping build the capacity of Higher Education institutions to improve the level of competencies and skills offered and address the existing absence of a similar programme. Delivery methods were deemed necessary as well. Thus, the programme's design should allow the use of multi-stage, mixed model MOOCs for Industry 4.0 lifelong learning, including non-formal and informal education. These MOOC modes strive to serve new target groups, such as a combination of study and work, practitioners in Industry 4.0, and professional networks in sectors of innovation and learning in the context of regional development (smart specialisation for Industry 4.0).

One of the needs that were established early on the programme's design was related to establishing viable synergies and links with the regional industry (and to the Manufacturing, Agriculture/Aquaculture, and Health sectors). This was important to address their needs in Industry 4.0—ready personnel and training needs and enhance the employability of graduates. The programme's delivery methodology aimed to build upon the faith of several businesses that technology is an equalizer that will provide more access to education, jobs and financing across different geographies and social groups. More and more companies are enthusiastic about adopting Industry 4.0 but are also troubled about how these technologies will be incorporated into their business processes. Industry will be involved as an educational facilitator in various stages of the educational process. This should help lift the barriers of uncertainty since educational goals will be pragmatically linked to the acquisition of the appropriate skills in an ever-changing environment.

A hypothesis about the design principles of the programme was formed, namely that the structure of the programme should be highly flexible to be able to address current gaps in the regional application areas, thus providing the local industry with a steady stream of highly qualified staff (either new higher education graduates or retrained existing professionals) that will head the effort to achieve the long-term goal of Industry 4.0. Viable synergies and links with the regional industry should be established through the Industry 4.0 internship actions embedded within the programme. The synergies should also be reinforced by forming a Communities of Practice for Industry 4.0 Education supported by a virtual tools environment that fosters cooperation and exchange of good practices among community members. The need for close cooperation between academia and Industry, a need highly mentioned in recent years,
partly requires a re-design of educational models and probably setting new ones such as Education 4.0. There is, however, a lack of know-how on how this will be achieved. According to many experts, the Industry 4.0 revolution is a complex phenomenon that is not easily fathomed, and there are significant difficulties in its translation into educational perspectives. Most national educational systems are expected to produce workers that can fit the needs of the industry. Thus, it is expected that Industry 4.0–ready graduates should be the goal of the educational system. In turn, this requires the appropriate preparation of the educational system in terms of human capital (educators) and means of delivery (educational processes, structures, equipment, and methodologies).

3.2 General structure
The Master's Programme curriculum provides theoretical and practical training for students through critical subject areas, optional subject areas, and seminars. In the final stages, students will choose between external placements or a public defence of the final project (Master Thesis).

The course is designed to correspond to 90 ECTS (18 months) divided into three course-based semesters and one Master thesis/Placement semester. An ECTS unit corresponds to 30 hours of study, according to the European Credit Transfer System. Each Semester allows 30 ECTS to be gained. The first two semesters are based on courses, lab exercises, and laboratory sessions that provide the basis for each student's specialisation pathway in the third Semester. Four specialisation pathways are related to an application area: Industry 4.0 for Manufacturing, Industry 4.0, Agriculture 4.0, Aquaculture 4.0, and Pervasive Health services.

The curriculum offers four types of courses:
1. Fundamental courses are compulsory for all specialisations and are taught in the 1st and 2nd Semesters. They provide core knowledge for the various Industry 4.0 topics.
2. Elective courses for the specialisation pathways. Students can select such a course from a list of options for gaining more profound knowledge on a specific topic. They are provided in the 1st and 2nd Semesters of the 1st year of the Master's Course.
3. Orientation courses are compulsory for a specialisation pathway. These are core courses for a specific path and are offered in the 3rd Semester.
Orientation Elective courses for a specific specialisation pathway are offered in the 3rd Semester.
The final thesis or placement covers the 4th Semester of the Course.

The curriculum will offer 30 ECTS for fundamental courses for each of the four specialisation pathways. In summary, the ECTS mapping is as follows:
- 10 ECTS for elective courses
- 20 ECTS for orientation courses
- 10 ECTS for Orientation Elective courses
- 20 ECTS for the Master Thesis/Placement

3.3 Mode of delivery
The program prioritises flexibility and uses a blended delivery model combining classroom-based teaching methods with online learning. Advanced Learning Management systems supplement education, combining online teaching with regular face-to-face meetings with academic staff. To make it accessible to full-time workers or international students, this might also involve evening seminars or weekend conferences. Depending on the course, attending these meetings may not always be mandatory.
This model enables students to meet each other and their tutors in person throughout the program while providing various learning materials that can be used to study from home, such as course materials, set books, audio and video materials, and software specially prepared for distance learning. The academic staff will continuously support students and be regularly contacted to ensure they receive the necessary guidance.

3.4 Evaluation and Assessment

Student performance evaluation is a critical issue for reflection and research in the educational and academic community at the dawn of the 21st century. Global surveys increasingly recognise that student evaluation is essential to the educational process as it is a dominant criterion for success or failure. In modern pedagogy, evaluating students' performance is considered a fundamental process directly related to teaching. Student assessment pervades the entire teaching process, controlling the process of achieving intended objectives and correlating them with resulting learning outcomes. In this context, reviews play an essential role as a feedback mechanism for both students, facilitating continuous monitoring of their learning progress and detecting weaknesses through metacognitive skills such as self-regulation and instructors of the educational process.

Especially in the case of the MSc programme at hand, evaluating students' performance contributes to:

- Determining the degree of achievement of teaching objectives and planning subsequent learning stages by instructors and instructional designers.
- Providing continuous feedback to improve the quality and effectiveness of teaching practices.
- Investigating and evaluating individual and group actions of students, as well as their abilities and skills developed during the teaching process.
- Encouraging active participation from students in the assessment process and cultivating self-assessment, peer-assessment, and reflection skills.
- Identifying learning weaknesses and shortcomings of students, providing feedback, and designing appropriate teaching interventions to improve the learning process.
- Strengthening students' self-confidence and self-esteem and developing metacognitive skills through controlling and managing their learning.
- They are upgrading the quality of the educational process, which aims to encourage and incentivise students to learn.

3.5 Work-based learning and Mentoring

Work-based learning (WBL) is a vital element in engineering programmes and can be considered as a way to learn for work. Students usually undertake the WBL, part of their degree in work experience modules. Integrating WBL into an MSc program is a significant challenge for educators, as it is part of the overall degree evaluation. The work experience can be from a few months to a whole year. Many students believe the WBL has improved skills like working under pressure, communication, timing, interpersonal and reflexive skills. WBL significantly improves students' motivation, general skills, and specific technical skills. Within the Industry 4.0 programme, a successful work placement scheme includes the following stages:

- Prepare the placement. Building links with the industry takes several years. In some engineering departments, a particular staff member contacts the employers and informs them about the placements' possible benefits.
• Cooperation between the stakeholders of the process. There should be a handbook setting out responsibilities for students and companies. Having a visiting tutor who monitors all members’ processes and communication is also useful.

• Students should be informed about the benefits of job placements and the formal requirements that exist in the workplace. It is also necessary to take courses to help students write their CVs and complete the application forms.

• The evaluation process should be simple. Students should be encouraged to evaluate their progress. They could complete a personal development diary. Additionally, if a student completes project assignments, the project report is part of the assessment.

Besides WBL, the programme uses mentoring as a dynamic tool for learning and evaluation. Mentoring is a usually one-to-one relationship in which an expert voluntarily teaches a student. Depending on the approach, two kinds of mentoring are distinguished: formal and informal mentoring. Formal mentoring is an organised programme which matches mentees with mentors who can help them towards a development goal. Informal mentoring occurs between two individuals where one gains the other's insight, knowledge and support.

Mentoring usually has four components: the mentor, the mentee, the relationship and the environment. The mentor’s main tasks are to identify the mentee's goals, provide advice and guidance, share insights, provide suggestions on activities and information that would benefit the mentee and assist the mentee by being a reference and advocate. The mentor is described as being an advisor, councillor, confidant, advocate, cheerleader and listener in different roles depending on the specific aims and objectives agreed with the mentee.

The mentee must take responsibility for the relationship. The mentee must know what he or she wants, establish priority issues for action or support and shape the overall agenda for the relationship. The mentee is involved in the relationship as an active partner and must be open to communicating with the mentor. The relationship between the mentor and the mentee must be one in which each values the other and cares for the relationship itself. The environment represents the organizational setting within which mentoring takes place. Within this setting, the goals of the mentoring are set. Within the context of the MSc in Industry 4.0, a formal mentoring programme is proposed that exploits the benefits of informal mentoring in encouraging the mentee and the mentor to establish and maintain a beneficial relationship. Mentoring activities have to last enough to allow for the establishment of a relationship between mentor and mentee. Still, they should drag on for too long to avoid becoming a burden for the involved parties.

Complementary to mentoring, clinics may be used for challenging educational situations in the Industry 4.0 programme. A “clinic” aims to diagnose and remedy a problematic situation. Diagnosis requires analysis of internal and external factors; remedy usually comes in the form of discussion and advice from experts. Therefore, in our case, the “clinics” will offer advice on specific challenges to the programme members facing them. Those who participate in the “clinics” will be able to learn the techniques the experts use to approach, analyse and deal with a problematic situation and benefit from their practical advice.
4. Structure of the Programme

4.1 Course list
The list of courses per type is presented in the following tables:

<table>
<thead>
<tr>
<th>Table 1: Core Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
<tr>
<td>CO4</td>
</tr>
<tr>
<td>CO5</td>
</tr>
<tr>
<td>CO6</td>
</tr>
<tr>
<td>CO7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2: Compulsory Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
</tr>
<tr>
<td>COM1</td>
</tr>
<tr>
<td>COM2A</td>
</tr>
<tr>
<td>COM2B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3: Elective Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
</tr>
<tr>
<td>EL1</td>
</tr>
<tr>
<td>EL2</td>
</tr>
<tr>
<td>EL3</td>
</tr>
<tr>
<td>EL4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 1: Orientation Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
</tr>
<tr>
<td>OM1</td>
</tr>
<tr>
<td>OM2</td>
</tr>
<tr>
<td>OM3</td>
</tr>
<tr>
<td>A1</td>
</tr>
<tr>
<td>A2</td>
</tr>
</tbody>
</table>
4.2 Course description
All courses in the curriculum are described using a standard form, which provides information about the course objectives, prerequisites, content outline, teaching methods, evaluation criteria, and reference materials. This standardized form ensures that students, faculty, and other stakeholders clearly and consistently understand what is expected in each course. An example of such a form for the ‘Cybersecurity in Industry 4.0’ course is presented in Table 5.

Table 5: Example of a form describing a course

<table>
<thead>
<tr>
<th>Course Title:</th>
<th>Cybersecurity in Industry 4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code:</td>
<td>C01</td>
</tr>
<tr>
<td>Semester:</td>
<td>Depending on the Institution, Semester A’ is proposed</td>
</tr>
<tr>
<td>Direction:</td>
<td>ALL</td>
</tr>
<tr>
<td>ECTS:</td>
<td>Depends on the Institution</td>
</tr>
</tbody>
</table>

Course Summary
The course aims to provide the concepts necessary to (a) understand the meaning of information security and security of infrastructures and networks; (b) enable the student to make an analysis of the fundamental security features of networks and infrastructures; (c) provide the fundamental tools for the design and the assessment of the solutions implemented in the network for the information security requirements. Understanding of cyber threats arising from interaction with the web and the internet in general. Knowledge of the fundamentals of cryptography. Understanding of certification mechanisms and digital signature. Capacity to (i) recognize the requirements of confidentiality, integrity, authenticity, authentication and non-repudiation during the analysis/design phase, identifying suitable standards to guarantee them; (ii) support the process of analysis and definition of security policies at the organization level; (iii) critically evaluate infrastructures and applications with respect to security requirements; (iv) assess the presence of significant vulnerabilities in infrastructures and applications; (v) study and understand security standards.

Course Pre-requisites (if applicable)
Basic knowledge of computer networks, Cloud computing

Approximate Time Needed
Number of weeks the Course is taught: Depends on the Institution,
Number of hours per week the Course is taught: Depends on the Institution,

Course Foundation

Student Objectives/Learning Outcomes
After the end of the course, the student will be able to:
- define ICT security landscape, analyze ICT network architecture and break it down into hardware and software components, identify connected services, interact with industrial and ICT domain specialists for all issues related to information security,
- analyze industry 4.0 case studies,
- apply threat modelling process (STRIDE, PASTA) and methodologies to systematically identify possible attacks, identify vulnerabilities, prioritize specific issues and classify threats (DREAD), define mitigation actions,
- setup a secure audit methodology (OSINT),
- apply security standards (ETSI, NIST, ISO),
- use standard cryptographic mechanisms to reinforce security (AES, ECC), digital securities,
- deploy a public key infrastructure, and use federated identity management frameworks.

Assessment tools

- [] Project
- [] Mid-term exam
- [x] Final exam
- [] Presentations

References:

5. **Industry 4.0 and E-commerce**

Future work includes configuring the programme to be applied to e-services under the e-commerce umbrella, moving away from traditional, purely industrial applications. Thus, when designing an MSc course for Industry 4.0, integrating e-commerce becomes paramount in illustrating the changing dynamics of modern industries. Having in mind the rapid evolution of e-commerce, it's essential to highlight its impact on contemporary sectors, focusing on the symbiotic relationship it shares with Industry 4.0 technologies. This would naturally segue into a deep dive into the world of digital platforms and marketplaces. A comprehensive look at giants like Amazon and Alibaba can offer insights into how these platforms leverage and integrate with the concepts and technologies of Industry 4.0.

The course should include topics from IoT and its intersection with e-commerce. By leveraging IoT, e-commerce operations can be enhanced, ranging from intelligent inventory management to predictive maintenance. IoT provides a wealth of data that can be used to refine operational strategies and significantly improve customer experiences by personalising offerings.

However, as commerce increasingly moves online, intelligent payment solutions' importance comes to the forefront. This portion of the course would benefit from exploring the role of digital payments, diving into topics like cryptocurrencies and blockchain.
Simultaneously, given the digital nature of these transactions, security and authentication mechanisms become pivotal.

The course should also focus on the role of data analytics in e-commerce. Big data from numerous e-commerce operations offers vast potential for predictive analytics, leading to more refined and personalised strategies based on intricate customer behaviour analysis. This emphasis on the customer can be further extended to discuss the reinvention of customer experience in the digital age. The integration of augmented and virtual reality technologies for enriched online shopping experiences, coupled with the rise of AI-driven customer service like chatbots, underscores the transformative power of this convergence.

Incorporating e-commerce into Industry 4.0 brings forth multiple educational challenges encompassing technical, operational, and strategic domains. One of the most crucial issues in this integration is data management. The rise of IoT and other connected systems in Industry 4.0 results in a surge in data volume, velocity, and diversity. Handling this vast amount of data, guaranteeing its accuracy, and extracting valuable insights become monumental responsibilities. Additionally, the integration necessitates seamless interoperability among different platforms, systems, and devices. Any inconsistency or incompatibility could cause disruptions, nullifying the potential benefits of such integration. These concepts are hard to teach.

6. **Discussion and Conclusions**

Designing for Industry 4.0 education involves merging traditional and new practices, demanding more sophisticated approaches. The MSc program for Industry 4.0 has been developed to meet novel challenges by providing students with a deep understanding of the dynamic interaction among automation, data exchange, cloud computing, cyber-physical systems, the Internet of Things, and other essential Industry 4.0 components. The program aims to provide a comprehensive yet flexible curriculum that ensures that graduates have the basic skills on the one hand and are equipped to cope with regional/national challenges on the other.

Moreover, an MSc program devoted to Industry 4.0 has some social implications. Being at the intersection of technological progress and societal transformation, such a program ensures that the next phase of industrial growth is backed up by the appropriate workforce. By teaching an understanding of the socio-ethical aspects of technological interventions, the program encourages graduates to consider the broader human consequences of their work.

As Industry 4.0 becomes more prevalent, the ethical considerations associated with its implementation become increasingly important. Future educational programmes dedicated to Industry 4.0 must emphasise the ethical implications of the technological interventions. One of the ethical concerns is the potential job displacement resulting from the increased automation and AI-driven systems. It should encourage graduates to develop technologies and work ethics that benefit society and address problems such as accessibility, inclusivity, and sustainability. Furthermore, the program must address ethical data privacy and cybersecurity concerns. The program should also educate students on the importance of transparency in developing and deploying Industry 4.0 technologies.

Acknowledgements

Part of this research was funded by the European Commission, Erasmus+ CBHE project "MSc in Industry 4.0", project number 610455-EPP-1-2019-1-MYEPPKA2-CBHE-JP.
References

