Direct Recycling of Rubber: Effect of Staged Mixing on Bulk and Surface Properties of Thermoplastic Macro-Composites
DOI:
https://doi.org/10.47577/technium.v24i.11693Keywords:
recycling, rubber, thermoplastic, fragmentation, surface roughness, macro-voids, viscosity, interphaseAbstract
The novel concept was used to upcycle GTR via cleavage of a cross-linked network with subsequent conversion into macro-composite. The pre-blend, which comprised loose 74 wt% GTR, was compacted with the matrix fusing under ram pressure. The final master step ensured the better bulk properties (interfacial adhesion, removal of macro-voids, viscosity) and the regular surface of the D2 blend, comprised of 20 phr SEBS. The extent of fragmentation could not be directly appraised, where traditional testing had failed to identify them. The regular surface quality and reduced viscosity of blend D2 evidence the decrease in size particles, accompanied by improving bulk properties (interfacial adhesion, removal of macro voids). The interactions were quantified using an analysis of peel strength; elastic recovery, tear, and tensile strength. Direct reprocessing via two-staged mixing governed the conversion of GTR to thermoplastic macro-composite., excluding the reclaim step.
References
Abdou-Sabet S.; Raman P. Patel RP, (1991), Morphology of Elastomeric Alloys, Rubber Chem Techn, 64:5: 769–779. https://doi.org/10.5254/1.3538589
Abdou-Sabet S., Puydak RC, Rader CP., (1996), Dynamically Vulcanized Thermoplastic Elastomers, (1996), Rubber Chem. Technol., 69:3: 476–494; https://doi.org/10.5254/1.3538382
Abeykoon, C., Pérez, P., Kelly, AL, (2020), The effect of materials rheology on process energy consumption and melt thermal quality in polymer extrusion. Polymer Eng. Science, 60(6), 1244-1265, https://doi.org/10.1002/pen.25377
Azimi M , (2021), Chemical oxidation of high-density polyethylene: Surface energy, functionality, and adhesion to liquid epoxy, J. Appl. Polymer Science, 138:39; DOI: 10.1002/app.50999
Babu RR, Singha N., Naskar K., (2011), Effects of mixing sequence on peroxide cured (PP)/ethylene octene copolymer (EOC) thermoplastic vulcanizates (TPVs). Part. II. Viscoelastic characteristics, J. Polymer Res, 18:1:31-39; DOI:10.1007/s10965-010-9388-2
Bohin F, Feke DL, Manas-Zloczower I, (1996), Analysis of Power Requirements and Dispersion Quality in Batch Compounding Using a Dispersion Model for Single Agglomerates, Rubber Chem.Technol., 69:1, 1–7. doi:10.5254/1.353835
Byers, JT., (2001), Filler–Non-black. In: Baranwal, Stephens (Eds.), Basic Elastomer Technology. ACS, Rubber, Akron, Ohio,
–111; ISBN 10: 091241507X ISBN 13: 9780912415079
Candal, MV.; Gordillo, A.; Santana, OO.; Sánchez, JJ. (2008), Study of the adhesion strength on overmoulded plastic materials
using the essential work of interfacial fracture concept. J. Mater. Sci. 2008, 43, 5052–5060. DOI: 10.1007/s10853-008-2667-1
Chen L, Malollari KG, Uliana A, Sanchez D, Messersmith PB, Hartwig JF, (2021), Selective, Catalytic Oxidations of C–H Bonds in Polyethylene Produce Functional Materials with Enhanced Adhesion, Chemistry, 7, 137–145; doi.org/10.1016/j.chempr.2020.11.020
Clarke J; Freakley PK, (1994), Reduction in Viscosity of an SBR Compound Caused by Mastication and Disagglomeration during Mixing, Rubber Chem. Techn, 67:4: 700–715. https://doi.org/10.5254/1.3538705
Colom, X.; Carrillo, F.; Cañavate, J., (2007), Composites reinforced with reused tyres: Surface oxidant treatment to improve the interfacial compatibility. Compos. A: Appl. Sci. Manuf. 38(1):44-50 DOI:10.1016/j.compositesa.2006.01.022
Coran, AY.; Patel, RP, (1980), Rubber-thermoplastic compositions - 1. EPDM-PP thermoplastic vulcanizates, Rubber Chem. Techn. 53:141–150, http://dx.doi.org/10.5254/1.3535023
Coran AY; Patel, RP, (1996), in: G. Holden, RK Hans, RP Quirk (Eds.), Thermoplastic Elastomers, 2nd ed., Hanser Publishers, Munich, 143
Cotten GR, (1987), Mixing of carbon black with rubber: IV. Effect of carbon black characteristics, Plast. Rubber Process. Appl. 7, 173–178. doi:10.1007/s13233-014-2119-5.
Henzel T., Nijjer J., Chockalingam S., Wahdat H, Crosby AJ, Yan J., Cohen T., (2022), Interfacial cavitation, PNAS Nexus, 1, 1– 8, DOI:https://doi.org/10.1093/pnasnexus/pgac217
Jesson DA., Watts JF., (2012), The Interface and Interphase in Polymer Matrix Composites: Effect on Mechanical Properties and Methods for Identification, Polymer Reviews, 52(3-4); DOI: 10.1080/15583724.2012.710288
Ishimura, T., Iwai, I., Matsui, K., Mattonai, M., Watanabe, A., Robberson, W., Cook, A., Allen, H. L., Pipkin, W., Teramae, N., Ohtani, H., & Watanabe, C., (2021), Qualitative and quantitative analysis of mixtures of microplastics in the presence of calcium carbonate by pyrolysis-GC/MS. J. Analytical Applied Pyrolysis, 157, 105188. DOI:https://doi.org/10.1016/j.jaap.2021.105188
Fazli, A.; Rodrigue, D. (2020), Waste Rubber Recycling: A Review on the Evolution and Properties of Thermoplastic Elastomers, Materials, 13, 782. DOI:https://doi.org/10.3390/ma13030782
Fazli A.; Rodrigue, D., (2021), Effect of Ground Tire Rubber Particle Size and Content on the Morphological and Mechanical Properties of Recycled High-Density Polyethylene/GTR Blends, Recycling, 6 (3), 44; doi.org/10.3390/recycling6030044
Fazli A., Rodrige D., (2023), Thermoplastic elastomers based on recycled high-density polyethylene/ground tire rubber/ethylene vinyl acetate: Effect of ground tire rubber regeneration on morphological and mechanical properties, J. Thermoplastic Composite Mater, 36(6) 2285–2310; doi.org/10.1177/08927057221095388
Formela K, Korol J., Saeb MR. Interfacially modified LDPE/GTR composites with nonpolar elastomers: from microstructure to macrobehavior, Polym Test, 2015; 42: 89–98. DOI: 10.1016/j.polymertesting.2015.01.003
Kissi NE, Piau JM, Toussaint F, (1997), Sharkskin and cracking of polymer melt extrudates, J. Non-Newtonian Fluid Mech., 68, 271-90.
Klie B, Teich S, Haberstroh E, Giese U, (2015), New Method for Evaluating Rubber Mixing Quality by means of alternative Representation of the Fingerprint Chart, Kautschuk Gummi Kunststoffe, 10, 31-39
Koning, C.; Van Duin, M.; Pagnoulle, C.; Jérôme, R. (1998), Strategies for compatibilization of polymer blends. Prog. Polym. Sci. 23,707–757; doi.org/10.1016/S0079-6700(97)00054-3
l’Abee RMA.,Van Duin M, Spoelstraa AB, Goossens JGP, (2010), The rubber particle size to control the properties-processing balance
of thermoplastic/cross-linked elastomer blends, Soft Matter, 6, 1758-1768; DOI: 10.1039/B913458A
Le Cam, J-B. (2010), A review of volume changes in rubbers: the effect of stretching, Rubber Chem. Technology., 83, 247-269;
DOI:10.5254/1.3525684
Le Hel C., Bounor-Legaré V., Catherin M, Lucas A, Thèvenon A., Cassagnau P, (2020). TPV: A New Insight on the Rubber Morphology and Mechanic/Elastic Properties, Polymers, 12, 2315; doi:10.3390/polym12102315
Lefèvre V., Ravi-Chandar K., Lopez-Pamies O., (2015), Cavitation in Rubber: An Elastic Instability or a Fracture Phenomenon? Int. J. Fracture, 192(1):1-23, https:// doi. org/ 10. 1007/ s10704- 014- 9982-0
Lonardo, P.M., Lucca, D.A. and de Chiffre, L, (2002), ‘Emerging trends in surface metrology’, CIRP Annals – Manufacturing
Technology, 51 (2), 701–723. DOI: 10.1016/S0007-8506(07)61708-9
Manas-Zloczower I, Nir A, Tadmor Z., (1982), Dispersive mixing in internal mixers—a theoretical model based on agglomerate rupture. Rubber Chem. Technology, 55, 1250-1285; https://doi.org/10.5254/1.3535929
Martin G, Barrès C, Sonntag P, Garois N, Cassagnau P., (2009), Morphology development in thermoplastic vulcanizates (TPV): Dispersion mechanisms of a pre-crosslinked EPDM phase. Eur. Polymer J. 45 (11), 3255-3266. ⟨10.1016/j.europolymj.2009.07.012⟩
Mashita R., Bito Y., Uesugi K., Hoshino M, Kageyuki I., Kishimoto H., (2023), Insights into the cavitation morphology of rubber reinforced with a nano‑filler, Scientific Reports, 13:5805 https://doi.org/10.1038/s41598-023-33137-8
Montagna LS, Santana RMC, (2012), Influence of rubber particle size on properties of recycled thermoplastics containing rubber tyre waste, Plastics, Rubber Composites, 41:6, 256-262, https://doi.org/10.1179/1743289811Y.0000000032
Mujal-Rosas, R.; Orrit-Prat, J.; Ramis-Juan, X.; Marin-Genesca, M.; Rahhali, A., (2011) Study on dielectric, thermal, and mechanical properties of the ethylene vinyl acetate reinforced with ground tire rubber, J. Reinf.Plast. Compos. 30, 581–592. DOI:10.1177/0731684411399135
Prut, EV., Zhorina, LA., Novikov, DD., Gorenberg, AY., Vladimirov, LV., Berlin, AA., (2017), Structure and properties of blends based on ground rubber tires and thermoplastics. Mendeleev Communications, 27(4), 405-06. https://doi.org/10.1016/j.mencom.2017.07.030
Putman J., Putman M., (2002), An improved method for measuring filler dispersion of uncured rubber, Rubber World, 225 [6]:30-36
Rakhman MZ, (2021), Improvement of Workability and Integrity for Ambient Ground Rubber as Elastomer Alternative: Direct Incorporation and Functionalization, J. Appl. Sciences Technium, 3:7, 32-45, ISSN: 2668-778
Rakhman MZ, (2023), Blends Comprised Waste Tires and Reinforcing Carbon Black: Effect of Mixing Sequence on Processing and Physical Properties, J. Solid Waste Technology Management, 49:2, 91-102, doi.org/10.5276/jswtm/iswmaw/492/2023.91
Ramini M; Agnelli S, (2020), Shear heating parameter of rubber compounds useful for process control in injection molding machine, Rubber Chem. Technology, 93:4: 729–737; https://doi.org/10.5254/rct.20.79954
Rodriguez GM, Díaz-Requejo MM, Perez PJ, (2021), Metal-Catalyzed Post-polymerization Strategies for Polar Group Incorporation into Polyolefins Containing C−C, C=C, and Aromatic Rings: Macromolecules 2021, 54, 4971−4985; doi.org/10.1021/acs.macromol.1c00374
Rose A, (1948), The Sensitivity Performance of the Human Eye on an Absolute Scale, J. Optical Society of America, 38, (2), 196-208
Ruiz‑Hernandez V, José Roca M, Egea‑Cortines M, Weiss J., (2018), A comparison of semi-quantitative methods suitable for establishing volatile profiles, Plant Methods, 14:67 I https://doi.org/10.1186/s13007-018-0335-2
Saeb, MR.; Wi´sniewska, P.; Susik, A.; Zedler, Ł.; Vahabi, H.; Colom, X.; Cañavate, J.; Tercjak,A,Formela,K, (2022), GTR/Thermoplastics Blends: How Do Interfacial Interactions Govern Processing and Physico-Mechanical Properties?, Materials 15(3), 841; https://doi.org/10.3390/ma15030841.
Sengupta, P., Sengers, WGF., Noordermeer, J. W. M., Picken, SJ., Gotsis, AD. (2004), Linear viscoelastic properties of olefinic thermoplastic elastomer blends: melt state properties. Polymer, 45(26), 8881-891. https://doi.org/10.1016/j.polymer.2004.10.030
Scholz H., Poetschke P., Michael H., Mennig G, (2002), Morphology and Mechanical Properties of Elastomeric Alloys from Rubber Crumb and Thermoplastics, KGK Kautschuk Gummi Kunststoffe, 55 (11), 585
Seghar, S., Asaro, L., Rolland-Monnet, M., Hocine, N.A., (2019), Thermo-mechanical devulcanization and recycling of rubber
industry waste, Resources, Conservation Recycling, 144, 180–186; DOI:10.1016/j.resconrec.2019.01.047
Shiga S., Furuta M., (1982), Processability of EPR in an Internal Mixer (II) Morphological Changes of carbon black agglomerates during mixing, Nippon Gomu Kyokaishi, 55:491–503. doi:10.2324/gom
Smitthipong, W., Nardin, M., Schultz, J., Suchiva, K. (2009), Adhesion and self-adhesion of immiscible rubber blends. Int. J. Adhesion Adhesives, 29(3), 253-258. https://doi.org/10.1016/j.ijadhadh.2008.06.003
Sonnier, R.; Leroy, E.; Clerc, L.; Bergeret, A.; Lopez-Cuesta, J.M.; Bretelle, A.S.; Ienny, P. (2008), Compatibilizing
thermoplastic/ground tyre rubber powder blends: Efficiency and limits, Polym. Test. 27, 901–907; DOI: 10.1016/j.polymertesting.2008.07.003
Taguet A., Cassagnau P., Lopez-Cuesta JM, (2014), Structuration, selective dispersion and compatibilizing effect of (nano)fillers in polymer blends, Progress Polymer Science, 39:8, 1526-1563; DOI:10.1016/j.progpolymsci.2014.04.002
Tsuruoka, A., Takahashi, A., Aoki, D., & Otsuka, H. (2020), Fusion of Different Crosslinked Polymers Based on Dynamic Disulfide Exchange, Angew. Chem. Int. Ed., 59, 11, 4294-4298. https://doi.org/10.1002/anie.201913430
Yuan, B.; Li, X.; Sun, Y. A, Short Review of Aerobic Oxidative Desulfurization of Liquid Fuels over
Porous Materials. Catalysts 2022, 12,129. https://doi.org/10.3390/catal12020129
US Patent 7589154, (2009), Process for making thermoplastic vulcanizates,
US Patent 9441099, (2015), Olefinic Thermoplastic elastomer composition and process for producing the same
US Patent 11,034,822, (2021), Method for producing recycled thermoplastic rubber masterbatch with improved green strength
Van Buskirk P, Turetzky S, Gunberg P., (1975), Practical Parameters for Mixing, Rub. Chem. Techn, 48:4:577–591
doi.org/10.5254/1.3539661
Van Duin M, (2006), Recent Developments for EPDM-Based Thermoplastic Vulcanisates, Macromol. Symp., 233:11–16,
doi:10.1002/masy.200650102
Wang H, Chen S., Zhang J, (2009), Surface treatment of LLDPE and LDPE blends by nitric acid, sulfuric acid, and chromic acid
etching, Colloid Polym Sci, 287:541–548; DOI: 10.1007/s00396-009-2000-9
Wang, Y.-H., Chen, Y.-K., Rodrigue, D.. (2018). Production of Thermoplastic Elastomers Based on Recycled PE and Ground Tire Rubber: Morphology, Mechanical Properties and Effect of Compatibilizer Addition, Int. Pol. Process, 33, 4, 2018, 525, doi.org/10.3139/217.3544
Wu, H.; Tian, M.; Zhang, L.; Tian, H.; Wu, Y.; Ning, N., (2014), New understanding of microstructure formation of the rubber
phase in thermoplastic vulcanizates (TPV), Soft Matter, 10, 1816–1822; DOI:10.1039/c3sm52375f
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Moshe Z. Rakhman
This work is licensed under a Creative Commons Attribution 4.0 International License.