

The Algorithms and Data Structures course multicomponent

complexity and interdisciplinary connections

Gregory Korotenko

Dnipro University of Technology, Ukraine

korotenko.g.m@nmu.one

Leonid Korotenko

Dnipro University of Technology, Ukraine

leonid_korotenko@ukr.net

Abstract. The experience of modern education shows that the trajectory of preparing students

is extremely important for their further adaptation in the structure of widespread digitalization,

digital transformations and the accumulation of experience with digital platforms of business

and production. At the same time, there continue to be reports of a constant (catastrophic) lack

of personnel in this area. The basis of the competencies of specialists in the field of computing

is the ability to solve algorithmic problems that they have not been encountered before.

Therefore, this paper proposes to consider the features of teaching the course Algorithms and

Data Structures and possible ways to reduce the level of complexity in its study.

Keywords. learning, algorithms, data structures, data processing, programming, mathematics,

interdisciplinarity.

1. Introduction

The analysis of electronic resources and literary sources allows for the conclusion that the

Algorithms and Data Structures course is one of the cornerstones for the study programs

related to computing. Moreover, this can be considered not only from the point of view of

entering the profession, but also from the point of view of preparation for an interview in

hiring as a programmer, including at a large IT organization (Google, Microsoft, Apple,

Amazon, etc.) or for a promising startup [1]. As a rule, this course is characterized by an

abundance of complex data structures and various algorithms for their processing. This article

describes one of the possible approaches to teaching the Algorithms and Data Structures

course to students of Ukrainian universities in order to provide training for future IT

professionals.

The fundamentals of computer science constitute an integral component of computing

since they support all the processes of designing and constructing software products. Despite

the constant increase in the number of training courses programs and their elements,

algorithms are the fundamental basis for computer science and software development [2].

For example, Curriculum Guidelines for Undergraduate Degree Programs in Computer

Science [2] include the Algorithms and Complexity Knowledge Area to study algorithms and

data structures, which contains the following subsections: Basic Analysis, Algorithmic

161

Technium Vol. 2, Issue 5 pp.161-171 (2020)
ISSN: 2668-778X

www.techniumscience.com

Strategies, Fundamental Data Structures and Algorithms, Basic Automata, Computability and

Complexity, Advanced Computational Complexity, Advanced Automata Theory and

Computability, Advanced Data Structures, Algorithms, and Analysis.

The content of the Computing Essentials Knowledge Area in the Curriculum Guidelines

for Undergraduate Degree Programs in Software Engineering [3] is somewhat less congested.

Among the various elements, purely algorithmic components include: Programming

Fundamentals (control and data, typing, recursion), Algorithms, data structures, and

complexity, Construction technologies.

The Higher Education Standards of Ukraine [4], which determine the basic competencies

related to the results of undergraduate studies in the 12 Information Technologies body of

knowledge provide that the last components are implemented in the course of studying

disciplines (courses) being part of the educational and professional programs curricula. As a

rule, the curricula for all six majors in this body of knowledge (121 Software Engineering,

122 Computer Science, 123 Computer Engineering, 124 System Analysis, 125 Cybersecurity,

126 Information Systems and Technologies), include three courses for the study of algorithms

and data structures: Algorithmization and Programming, Algorithms and Data Structures and

Object-oriented Programming. The first course usually involves the solution of educational as

well as practical problems by means of any of the commonly used programming languages.

The second course is implemented as a description of the use of one of the popular

programming languages (Java, C #, Python, etc.) for the implementation of abstract data types

based on a variety of built-in data structures, as well as the construction of algorithms on their

basis for processing the elements, data stored in them with algorithm complexity analysis.

The third course considers the concepts of object-oriented programming (encapsulation,

inheritance and polymorphism) based on the creation and use of classes and objects,

operations overloading, multiple inheritance of virtual functions and classes, as well as

abstract classes [1].

2. Description of the method

Any course studied at the University exists in the structure of many constraints and

influencing factors. On the one hand, it is a component of a certain undergraduate program

and represents a block either inside or outside the body of knowledge of a particular specialty.

On the other hand, this course is influenced by rapidly developing components of that body of

knowledge which future specialists are trained for. And an important component of the

learning process is the educational and methodological support of the course, which

recommends the most effective, rational options, action patterns in relation to the type of

activity studied therein. Therefore, it has been proposed to analyze the level of elements

complexity by means of analytical and graphoanalytical methods.

3. Case study

At the first stage, the following approach has been used in order to try to assess the

structure and possible theoretical filling of the field of knowledge Algorithms and Data

Structures. Four books were selected from a wide range of books by well-known authors that

had become textbooks [5] and which were known because they were used to develop courses

of the same name taught at renowned universities: Massachusetts Institute of Technology,

Princeton University, State University of New York, Cornell University and Stanford

University [6, 7, 8, 9].

The first stage analysis of the structural construction of the content of these books has been

conducted, on the basis of which a list of the main topics presented in them has been created

162

Technium Vol. 2, Issue 5 pp.161-171 (2020)
ISSN: 2668-778X

www.techniumscience.com

(Table 1). For each topic, the number of pages allocated for the presentation of the

corresponding part of the material has been determined. When creating this table, it has been

taken into account that the algorithms shall be considered as the same technological product,

such as hardware, a graphical user interface, object-oriented systems or networks [6].

Table 1. Distribution of topics by page

Sl.
No.

Learning topics
Т.Cormen,

pages
R.Sedgewick,

pages
S.Skiena,

pages
А.Аhо,
pages

1
Introduction to Algorithm
Design

40 – 33 10

2 Analysis of algorithms 22 69 34 14

3 Abstract data types – 56 0 6
4 Elementary Data Structures 21 52 48 30

5 Sorting 82 116 29 41

6 String Sorts – 30 – –

7
Sorting algorithms and priority
queues

– 53 – –

8 Searching – – 13 –
9 Searching in Hash tables 33 34 – 24

10 Searching in Symbol Tables – 34 – –

11
Combinatorial Search and
Heuristic Methods

– – 43 –

12 Binary Search Trees 22 27 – 33
13 Balanced Search Trees – 34 – 29
14 Trie Search Trees – 26 – –
15 Substring Search – 29 – –
16 Regular Expressions – 21 – –
17 Red-Black Trees 31 – – –
18 Elementary Graph Algorithms 35 86 86 29
19 Minimum Spanning Trees 19 34 48 7
20 Shortest Paths 41 56 – 6
21 All-Pairs Shortest Paths 24 – – 8
22 Maximum Flow 61 – – –
23 Graph Hard Problems – – 39 23
24 Dynamic Programming 55 – 43 11
25 Matrix Operations 30 – 41 –
26 Set and String Problems 29 – 37 –
27 Computational Geometry 34 – 58 –
28 Approximation Algorithms 37 – 40 –

29
Sets, Relations, Functions,
Graphs, Trees & etc.

25 – 27 16

30
Divide-and-Conquer.
Recurrences & Recursions

49 – – 19

31 Greedy Algorithms 37 – – 4
32 Augmenting Data Structures 18 – – –
33 Amortized Analysis 30 – – –

34
Advanced Data Structures. B-
Trees

21 – – –

35
Advanced Data Structures.
Fibonacci Heaps

26 – – –

36 Advanced Data Structures. van 30 – – –

163

Technium Vol. 2, Issue 5 pp.161-171 (2020)
ISSN: 2668-778X

www.techniumscience.com

Sl.
No.

Learning topics
Т.Cormen,

pages
R.Sedgewick,

pages
S.Skiena,

pages
А.Аhо,
pages

Emde Boas Trees
37 Data Structures for Disjoint Sets 26 – – –
38 Linear Programming 55 – – –
39 Polynomials and the FFT 28 – – –

40
Probabilistic Analysis and
Randomized Algorithms

33 – – –

41 Multithreaded Algorithms 41 – – –
42 Number-Theoretic Algorithms 59 – – –
43 NP-Completeness 58 – – –
44 Counting and Probability 34 – – –

A radar chart has been constructed (Fig. 1) to implement the graphical method to analyze the data

obtained.

Fig. 1. The absolute distribution of the values of the number of pages of four authors' books, which

relate to the topics communicated

Graphoanalysis of the absolute number of pages of the topics presented has been implemented to

make more objective analysis. For this, a number of pages of each author has been taken as 100%

(Fig. 2).

Based on the analysis of the results obtained, it can be concluded that the number of topics

is large enough and this does not allow the authors to sufficiently cover each of them.

Moreover, an analysis of the approaches in the presentation of the material of the above-

mentioned authors allowed to draw the following conclusions.

1. The books require students to know one or more high-level programming languages and,

at the same time, use different tools for representing algorithms:

164

Technium Vol. 2, Issue 5 pp.161-171 (2020)
ISSN: 2668-778X

www.techniumscience.com

a) pseudo-code [6];

b) a subset of the Java programming language, several copyright libraries for

input / output and for statistical calculations; Java ADT implementations shall be performed

by defining an application programming interface (API), and then the Java class mechanism

shall be used to develop and implement the use in a client code [7];

c) pseudocode and language C [8];

d) Pascal (programming language) [9].

Fig. 2. Distribution of absolute values of the number of pages by topics under consideration

2. The concept of an algorithm in these books is defined as:

a) any correctly defined computational procedure, at the input of which a certain quantity

or set of values shall be supplied and the result of which is an output value or set of values;

the algorithm can also be considered as a tool designed to solve a properly posed

computational problem [6];

b) a method to solve a problem, suitable for implementation in the form of a computer

program [7];

c) a procedure that takes any of the possible input instances and converts it in accordance

with the requirements specified in the condition of an objective [8].

d) a finite sequence of instructions, each of which has a clear meaning and can be

performed with finite computational costs in a finite time [9].

3. The idea of data structures is given in the books as follows:

a) a method of storing and organizing data that facilitates access to these data and their

modification [6];

b) algorithms are methods of organizing the data involved in computing; objects created in

this way are called data structures [7];

c) data structures are used to represent the ADT, which are a set of variables, possibly

various types of data, combined in a certain way [9].

4. Abstract data type (ADT) is also defined differently:

a) it is a data type (a set of values and a set of operations for these values), access to which

is carried out only through the interface. The program that uses the ADT will be called the

165

Technium Vol. 2, Issue 5 pp.161-171 (2020)
ISSN: 2668-778X

www.techniumscience.com

client, and the program that contains the specification of this data type will be the

implementation [7];

b) it is a mathematical model with a set of operators defined within a framework of this

model. A simple example of an ADT is a set of integers with the operators of union,

intersection, and difference of sets [9].

The complexity of the newly created and accumulated sets and complexes of various data

requires the development of new structures for their storage and processing. More than 15

types of data storage structures have been known at the beginning of 2019 (Table 2). The total

number of actually elementary structures and types has exceeded 200 units, for each of which

some finite number of processing algorithms can be applied [10-12].

In turn, the implementation of each of the well-known structures is possible in more than

50 of the most popular programming languages. This makes the task of forming structures

and algorithms for their processing quite complex and non-trivial.

Table 2. Types of data storage element structures

Sl.

No.
Type of data structure Examples of structures

Total

Qty

1 Primitive pes Boolean, Character, Floating-point, Integer & etc. 7

2 Composite types Array, Structure, Union 3

3 Abstract data types (ADT)

Container, List (sequence), Tuple, Multimap, Set,

Multiset (bag)., Stack, Queue, Double-ended queue

(deque) & etc.
10

4 Linear data structures

Bit array, Bit field, Bitboard, Bitmap, Circular

buffer, Control table, Dope vector, Hashed array tree,

Iliffe vector, Hashed array tree & etc.
19

5 Lists
Doubly linked list, Array list, Linked list, Self-

organizing list, Skip list & etc.
13

6 Heaps
Heap, Binary heap, B-heap, Weak heap, Fibonacci

heap, Leonardo Heap, 2-3 heap & etc.
18

7 Binary trees

AA tree, AVL tree, Binary search tree, Cartesian

tree, Left-child right-sibling binary tree, Red–black

tree Tango tree & etc.
24

8 B-trees
B-tree, B+ tree, B*-tree, B# tree (B sharp tree),

Dancing tree & etc.
11

9 Trees
Radix tree, Parent pointer tree, Splay tree, Suffix

tree (PAT tree), Suffix array & etc.
15

10 Multiway trees
Ternary tree, K-ary tree, And–or tree, (a,b)-tree,

Link/cut tree, Spaghetti stack & etc.
14

11 Space-partitioning trees
Segment tree, Interval tree, Range tree, K-d tree,

Quadtree, Relaxed k-d tree & etc.
28

12 Application-specific trees
Abstract syntax tree, Parse tree, Decision tree,

Minimax tree, Finger tree & etc.
10

13 Hash-based structures

Bloom filter, Distributed hash table, Double

hashing, Dynamic perfect hash table, Hash list,

Hash tree & etc.
16

14 Graphs

Graph, Adjacency list, Adjacency matrix, Graph-

structured stack, Scene graph, Multigraph,

Hypergraph, Directed graph & etc.
14

15 Other data structures Lightmap, Winged edge, Quad-edge & etc. 5

 Totally: 207

166

Technium Vol. 2, Issue 5 pp.161-171 (2020)
ISSN: 2668-778X

www.techniumscience.com

It is also important to note that the formation of derived structures is based on basic data

types. Thus, many data processing operations fall into two groups:

a) operations with values stored in structural elements;

b) operations with the structural elements themselves (tops of trees and graphs, elements

of arrays and stacks, nodes of lists and queues, etc.).

At the same time, the requirement for first-year students to know different branches of

mathematics and have experience in mathematical transformations, as well as knowledge at a

certain level of programming languages (PL) of a high level [6-9] seem quite problematic,

since a deeper study of PL is carried out at an undergraduate level.

When using programming languages, in turn, it is necessary to take into account the

following important factors that determine the thinking style of programmers, as well as many

additional difficulties that arise at different stages of algorithms and data structures

implementation:

a) existing programming paradigms, the number of which has already exceeded fifteen

denominations [13];

b) a large number of programming languages, among which fairly new languages can be

distinguished (Rust, Swift, Go etc.) [14];

c) intralingual features based on the particular paradigms to which they relate;

d) various types of operations and different levels of priority for their implementation.

A peculiarity of mastering the Algorithms and Data Structures course is the complexity of

the organization types of the means for presenting various data and the possible operational

and algorithmic capabilities of specific programming languages (PL) used at different stages

of achieving the objectives defined.

The programming language is essentially an intermediary between specific structures for

storing data elements and their scope (development of Web applications, databases, object-

oriented information systems, e-commerce systems, etc.). On the other hand, in addition to the

ever-expanding range of specific programming languages (JavaScript, Python, C ++, C #,

Java, Ruby, Pascal, Visual Basic for Applications, Perl, etc.), there is an increasing number

of:

a) constantly evolving hardware components;

b) information technology and digital platforms;

c) data structures of ever-increasing complexity;

d) constantly updated tools of Rapid Application Development – RAD.

Moreover, different languages have different number of operations (operators) for working

with data (for example, multiplication, division, addition, subtraction, etc.), as well as the

number of priorities for their use (Table 3).

Table 3. Programming language operations and their priority groups

The name of programming

language

The number of

operators / operations

The number of priority

levels of operations

Turbo Pascal 7.0 20 4

Visual Basic 6.0 23 4

Visual Basic for Applications 23 4

VBScript 23 9

Python 35 23

C 43 15

Ruby 43 23

167

Technium Vol. 2, Issue 5 pp.161-171 (2020)
ISSN: 2668-778X

www.techniumscience.com

Java 44 9

Java Script 48 14

C# 51 14

C++ 52 18

Perl 64 17

It is also necessary to take into account that a variety of program units representing the

components of data structures. Blocks in programming [15] use different syntax in different

programming languages:

a) in Pascal a function or procedure using operator brackets begin ... end;

b) in C a block limited by braces;

c) in Python a block using spaces as delimiters, etc.

4. Conclusions
During the academic year 2019-20 the authors have developed a training Algorithms and Data

Structures course for the 1st year students in accordance with the curricula of educational and

professional programs of several specialties (121 Software Engineering, 122 Computer Science, 123

Computer Engineering, 124 System Analysis, 125 Cybersecurity and 126 Information Systems and

Technologies) in 12 Information Technology body of knowledge based on the following ideas.

C ++ has been chosen as the main programming language. The main property for this choice is the

presence of a procedural paradigm, which is not possessed, for example, by Java and C#. This ensures

a comfortable entry of students into the specialty, starting with the supporting Algorithmization and

Programming course. The second important feature is the presence of a large number of C-like

languages [16].

Accordingly, as of June 2020, TIOBE [17], PYPL [18] and RedMonk [19] services reported the

popularity of programming languages as follows (Table 4), where C-like languages are highlighted in

gray.

Table 4. Programming language ratings according to TIOBE, PYPL and RedMonk
Place TIOBE June 2020 PYPL June 2020 RedMonk January 2020

1 C Python JavaScript

2 Java Java Python

3 Python Javascript Java

4 C++ C# PHP

5 C# PHP C#

6 Visual Basic C/C++ C++

7 Javascript R Ruby

8 PHP Objective-C CSS

9 R Swift TypeScript

10 SQL TypeScript C

11 Swift Matlab Swift

12 Go Kotlin Objective-C

13 Ruby Go Scala

14 Assembly language VBA R

15 MATLAB Ruby Go

16 Perl Scala Shell

17 PL/SQL Visual Basic PowerShell

18 Scratch Rust Perl

19 Classic Visual Basic Dart Kotlin

20 Rust Perl Haskell

168

Technium Vol. 2, Issue 5 pp.161-171 (2020)
ISSN: 2668-778X

www.techniumscience.com

Based on the provisions of the Böhm–Jacopini theorem (structured program theorem) [20],

the authors have focused on the basic structures of the C++ language: SEQUENCE,

SELECTION and ITERATION. At the same time, it has been taken into account that

SEQUENCE construct in C++ language does not belong to the group of control structures,

which include the if, if / else, switch, for, while, do / while statements. Therefore,

commenting on the functional purpose of these data structures has been highlighted in

separate subsections. The proposed approach has been applied with the intention that the

didactic “highlight” for the student shall be the fact that he/she should think about its purpose

when commenting on the introduced structure.

Since the teaching experience has shown low informativeness of the pseudocode, the

emphasis has been made on programs with detailed comments. The development of students'

approaches and skills in designing software units based on reading, studying and

understanding other person’s code as the most important component of team software

development has been put at the forefront. For this purpose, each section of the laboratory

workshop has contained programs with detailed comments on each line [21].

The commented programs implementing specific algorithms have been added with their

table-graphical representation. In particular, each of the sorting methods studied in the

methodological materials has been presented in two forms: program and table-graphic

(Fig. 4).

Fig. 4. One example of a tabular graphical representation of the beginning of an insertion

sorting

The structure and format of comments in the computer programs offered for learning by

students have been based on the well-known standards: “Coding standards on 64-bit platforms

IBM Knowledge Center” (IBM) and “Google C ++ Style Guide” (Google) [22, 23].

Moreover, the authors have used the so-called CamelCase to describe variables. The main

provisions of the Google standard have been taken as a basis. Unfortunately, it has been

169

Technium Vol. 2, Issue 5 pp.161-171 (2020)
ISSN: 2668-778X

www.techniumscience.com

necessary to exclude some points related to the use of OOP since the course was presented for

first-year students.

Based on the experience of teaching this course and taking into account the

interdisciplinarity of its components [24], the Algorithmization and Programming, Algorithms

and Data Structures and Object-oriented Programming courses has been proposed to be

considered as a continuous chain. The Algorithmization and Programming course requires to

immediately focus on the students’ understanding of operations with embedded data of

various types: integer, real, logical, symbolic, pointers, etc. Then it is possible to proceed with

the students to study arrays of embedded data, including dynamic ones. Various sorting

methods can be considered at this stage. When considering functions, recursion shall be

considered. And when considering structures – stacks and lists shall be considered.

Then in the Algorithms and Data Structures course the attention can be drawn to the

following issues: Sorting, String Sorts, Sorting algorithms and priority queues, Searching,

Searching in Hash tables, Searching in Symbol Tables, Binary Search Trees, Balanced Search

Trees, Elementary Graph Algorithms, Minimum Spanning Trees, Shortest Paths etc.

And the implementation of basic structures according to [1] and practical examples of their

application shall be considered in the Object-Oriented Programming course.

It is also necessary to provide support for the above-mentioned courses in such field of

knowledge as Mathematical Analysis.

In addition, one of the possible solutions in the educational space of Universities may be

the formation of modern algorithmic competencies on the basis of the Special Structures and

Data Processing Algorithms with OOP Elements sample course.

References

[1] G.L. McDowell: Cracking the Coding Interview. 6th Edition. 189 Programming

Questions and Solutions. CareerCup, LLC, Palo Alto, CA. 2016.

[2] Computer Science Curricula 2013 (СS 2013); Curriculum Guidelines for

Undergraduate Degree Programs in Computer Science, Association for Computing

Machinery (ACM), IEEE Computer Society, available at

https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf

(accessed 18 June 2020).

[3] Software Engineering 2014 (SE 2014); Curriculum Guidelines for Undergraduate

Degree Programs in Software Engineering, Association for Computing Machinery

(ACM), IEEE Computer Society, available at

https://www.acm.org/binaries/content/assets/education/se2014.pdf (accessed 18 June

2020).

[4] Approved standards of higher education. MES of Ukraine, available at

https://mon.gov.ua/ua/osvita/visha-osvita/naukovo-metodichna-rada-ministerstva-

osviti-i-nauki-ukrayini/zatverdzheni-standarti-vishoyi-osviti (accessed 18 June

2020).

[5] 10 Data Structure & Algorithms Books Every Programmer Should Read, available at

https://hackernoon.com/10-data-structure-algorithms-books-every-programmer-

should-read-d50487313127 (accessed 18 June 2020).

[6] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein: Introduction to Algorithms, Third

Edition. The MIT Press. Massachusets Institute of Technology, 2009.

[7] R. Sedgewick, K. Wayne: Algorithms. Fourth Edition. Addison-Wesley, 2011.

[8] S.S. Skiena: The Algorithm Design Manual, Second Edition. Springer-Verlag London

170

Technium Vol. 2, Issue 5 pp.161-171 (2020)
ISSN: 2668-778X

www.techniumscience.com

Limited, 2008.

[9] A.V. Aho, J.E. Hopcroft, J.D. Ullman: Data Structures and Algorithms. Addison-

Wesley, 1985.

[10] List_of_data_structures, available at

https://en.wikipedia.org/wiki/List_of_data_structures (accessed 18 June 2020).

[11] Fundamental Data Structures, available at http://www.sncwgs.ac.in/wp-

content/uploads/2015/11/Fundamental-Data-Structures.pdf (accessed 18 June 2020).

[12] Advanced Data Structure and Algorithms. EXCEL BOOKS PRIVATE LIMITED,

Phagwara Punjab, India, 2011.

[13] Programming paradigm, available at

https://en.wikipedia.org/wiki/Programming_paradigm (accessed 18 June 2020).

[14] Programming languages: Rust enters top 20 popularity rankings for the first time,

available at https://www.zdnet.com/article/programming-languages-rust-enters-top-

20-popularity-rankings-for-the-first-time/ (accessed 18 June 2020).

[15] Block (programming), available at https://ru.qwe.wiki/wiki/Block_(programming)

(accessed 18 June 2020).

[16] List of C-family programming languages, available at

https://en.wikipedia.org/wiki/List_of_C-family_programming_languages (accessed

18 June 2020).

[17] Programming Languages: TIOBE Index June 2020, available at

https://www.geeks3d.com/forums/index.php/topic,6508.0.html (accessed 18 June

2020).

[18] PYPL PopularitY of Programming Language Index. Worldwide, Jun 2020 compared to

a year ago, available at http://pypl.github.io/PYPL.html (accessed 18 June 2020).

[19] The RedMonk Programming Language Rankings: January 2020, available at

https://redmonk.com/sogrady/2020/02/28/language-rankings-1-20/ (accessed 18 June

2020).

[20] E. Yourdon: Program Structure and Design. Prentice-Hall, 1975.

[21] R.L. Glass: Facts and Fallacies of Software Engineering. Addison-Wesley Professional,

2002.

[22] Google C++ Style Guide, available at https://google.github.io/styleguide/cppguide.html

(accessed 18 June 2020).

[23] The Stanford University C++ Style Guide, available at

https://hownot2code.com/2017/01/18/the-stanford-university-c-style-guide/

(accessed 18 June 2020).

[24] Moti Nissani. Fruits, Salads, and Smoothies: A Working Definition of

Interdisciplinarity. The Journal of Educational Thought (JET) / Revue de la Pensée

Éducative. – Vol. 29, No. 2 (August, 1995), pp. 121-128. available at

https://www.jstor.org/stable/23767672 (accessed 18 June 2020).

171

Technium Vol. 2, Issue 5 pp.161-171 (2020)
ISSN: 2668-778X

www.techniumscience.com

