A framework for applying the Logistic Regression model to obtain predictive analytics for tennis matches

Authors

  • Georgios Friligkos University of Patras, Greece and UBS, Zurich, Switzerland
  • Evi Papaioannou University of Patras and CTI “Diophantus”, Greece
  • Christos Kaklamanis University of Patras and CTI “Diophantus”, Greece

DOI:

https://doi.org/10.47577/technium.v15i.9616

Keywords:

Logistic Regression, prediction of tennis match outcomes, machine learning, artificial intelligence, python, postgreSQL, Azure web app

Abstract

In this work, we apply the Logistic Regression (LR) model for predicting the outcome of tennis matches and providing win probability for participating/competing players. Prediction models are classified as machine learning methods, which generate predictions for future scenaria exploiting existing data collections. With the objective to maximize the accuracy of our predictions, we apply the Logistic Regression model under various parameter configurations seeking for an optimal combination of independent variables (features). We present and discuss promising results obtained via the holdout-validation method and the cross-validation method. Furthermore, as a proof of concept of our approach, we designed and implemented a web platform, where users can obtain real-time predictions for tennis matches. Our LR-based framework combined with Artificial Intelligence (AI) can serve as a paradigm in the field of sports analysis for predicting outcomes and evaluating athletic performance.â

IMG9616.jpg

References

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006. ISBN: 978-0387-31073-2.

Leo Breiman. “Random Forests.” In: Machine Learning 45 (2001), pp. 5–32. DOI: 10.1023/A: 1010933404324.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016, pp. 96–161, 326–366. ISBN: 978-0262035613.

David W. Hosmer Jr., Stanley Lemeshow, and Rodney X. Sturdivant. Applied Logistic Regression. Wiley, 2013. ISBN: 978-1-118-54835-6.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren (Editors). Automated Machine Learning: Methods, Systems, Challenges. Springer, 2019. ISBN: 978-3-030-05317-8.

Bruce G. Marcot and Anca M. Hanea. “What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis?” In: Computational Statistics 36.3 (2021), pp. 2009–2031. DOI: 10.1007/s00180-020-00999-9.

Andreas C. Müller and Sarah Guido. Introduction to Machine Learning with Python: A Guide for Data Scientists. O’Reilly Media, 2016, pp. 251–302. ISBN: 978-1449369415.

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2012, pp. 1–32, 245–280. ISBN: 978-0-262-01802-9.

Kenneth H. Rosen. Discrete Mathematics and Its Applications. 7th. New York: McGraw-Hill, 2012. ISBN: 978-0073383095.

Frank Rosenblatt. “The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain.” In: Psychological Review 65.6 (1958), pp. 386–408. DOI: 10.1037/h0042519.

Eric Siegel. Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die. Wiley, 2013. ISBN: 978-1118356852.

Nate Silver. The Signal and the Noise: Why So Many Predictions Fail – but Some Don’t. Penguin Press, 2012. ISBN: 978-0-14-312508-2.

Express.js. Express.js. 2023. URL: https://expressjs.com/.

Microsoft Azure. Azure Web App. 2023. URL: https://azure.microsoft.com/en-us/services/app-service/web/.

Mozilla Developer Network (MDN). CSS (Cascading Style Sheets). 2023. URL: https://developer.mozilla.org/en-US/docs/Web/CSS.

Mozilla Developer Network (MDN). HTML (Hypertext Markup Language). 2023. URL: https://developer.mozilla.org/en-US/docs/Web/HTML.

Mozilla Developer Network (MDN). JavaScript. 2023. URL: https://developer.mozilla.org/en-US/docs/Web/JavaScript.

Node.js Foundation. Node.js. 2023. URL: https://nodejs.org/.

PostgreSQL Global Development Group. PostgreSQL: The world’s most advanced open-source relational database. 2023. URL: https://www.postgresql.org/.

Python Software Foundation. Python Language Reference, version 3.10. 2023. URL: https://docs.python.org/3.10/reference/index.html.

Downloads

Published

2023-10-14

How to Cite

Friligkos, G., Papaioannou, E., & Kaklamanis, C. (2023). A framework for applying the Logistic Regression model to obtain predictive analytics for tennis matches. Technium: Romanian Journal of Applied Sciences and Technology, 15, 60–74. https://doi.org/10.47577/technium.v15i.9616