Public Sentiment on Generative AI: Analysis of the Gap between Positive Online Media and Negative Narratives on Social Media
Main Article Content
Abstract
This study examines the differences in public sentiment towards generative AI on two different communication platforms: social media and online media. Sentiment analysis from 35,433 discussions on social media showed that 45% of them had negative sentiments, which mainly focused on privacy, data security and ethics issues. In contrast, an analysis of 27,970 articles in online media revealed that 71% of them had positive sentiments, highlighting the potential of generative AI in improving efficiency, creativity, and innovation in sectors such as education and healthcare. This difference confirms how the characteristics of the platform affect public perception. The findings have important implications for policymakers and technology development. Addressing public concerns through strong AI regulation and developing inclusive communication strategies is essential to bridging the sentiment gap. A balanced Naras can increase public literacy and trust in generative AI, encouraging responsible technology adoption. By expanding the scope of the analysis, further studies can provide evidence-based insights to support decision-making in technology governance.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
[1] Amankwah-Amoah, J., Abdalla, S., Mogaji, E., Elbanna, A., & Dwivedi, Y. K. (2024). The impending disruption of creative industries by generative AI: Opportunities, challenges, and research agenda. International Journal of Information Management, 79(January), 1–11. https://doi.org/10.1016/j.ijinfomgt.2024.102759
[2] Arowolo, S. O. (2017). Understanding framing theory. Mass Communication Theory, June, 4. https://doi.org/10.13140/RG.2.2.25800.52482
[3] Cahyono, A. S. (2016). Pengaruh Media Sosial Terhadap Perubahan Sosial Masyarakat di Indonesia. Publiciana, 9(1), 140–157. https://doi.org/10.56943/ejmi.v1i2.9
[4] Chan, C. K. Y., & Hu, W. (2023). Students’ voices on generative AI: perceptions, benefits, and challenges in higher education. International Journal of Educational Technology in Higher Education, 20(1), 1–19. https://doi.org/10.1186/s41239-023-00411-8
[5] Colaiori, F., & Castellano, C. (2015). Interplay between media and social influence in the collective behavior of opinion dynamics. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 92(4), 1–10. https://doi.org/10.1103/PhysRevE.92.042815
[6] Cruz, R. D. La. (2023). Sentiment Analysis Using Natural Language Processing (NLP). Https://Medium.Com/. https://medium.com/@robdelacruz/sentiment-analysis-using-natural-language-processing-nlp-3c12b77a73ec
[7] Daas, P. J. H., & Puts, M. J. H. (2014). Social Media Sentiment and consumer Confidence (5; QB-BF-14-001-EN-N).
[8] Dwivedi, Y. K., Ismagilova, E., Hughes, D. L., Carlson, J., Filieri, R., Jacobson, J., Jain, V., Karjaluoto, H., Kefi, H., Krishen, A. S., Kumar, V., Rahman, M. M., Raman, R., Rauschnabel, P. A., Rowley, J., Salo, J., Tran, G. A., & Wang, Y. (2021). Setting the future of digital and social media marketing research: Perspectives and research propositions. International Journal of Information Management, 59(5), 1–37. https://doi.org/10.1016/j.ijinfomgt.2020.102168
[9] Gamson, A. W., & Modigliani, A. (1989). Media Discourse and Public Opinion on Nuclear Power. In American Journal of Sociology (Vol. 95, Issue 1, pp. 1–37). https://ssc.wisc.edu/~oliver/SOC924/Articles/GamsonMediaAJS.pdf
[10] Ghebrehiwet, I., Zaki, N., Damseh, R., & Mohamad, M. S. (2024). Revolutionizing personalized medicine with generative AI: a systematic review. In Artificial Intelligence Review (Vol. 57, Issue 5). Springer Netherlands. https://doi.org/10.1007/s10462-024-10768-5
[11] Gruenhagen, J. H., Sinclair, P. M., Carroll, J. A., Baker, P. R. A., Wilson, A., & Demant, D. (2024). The rapid rise of generative AI and its implications for academic integrity: Students’ perceptions and use of chatbots for assistance with assessments. Computers and Education: Artificial Intelligence, 7(6), 1–10. https://doi.org/10.1016/j.caeai.2024.100273
[12] Gultom, M., Marikros, J., & Rusli, W. (2024). Penerapan Vader Sentiment untuk Mendeteksi Sentimen Bahasa Inggris berbasis Website.
[13] Hakim, L. (2022). Peranan Kecerdasan Buatan (Artificial Intelligence) dalam Pendidikan. Https://Ppg.Dikdasmen.Go.Id/. https://ppg.dikdasmen.go.id/news/peranan-kecerdasan-buatan-artificial-intelligence-dalam-pendidikan
[14] Hanaysha, J. R. (2022). Impact of social media marketing features on consumer’s purchase decision in the fast-food industry: Brand trust as a mediator. International Journal of Information Management Data Insights, 2(2), 1–10. https://doi.org/10.1016/j.jjimei.2022.100102
[15] Helfmann, L., Conrad, N. D., Lorenz-Spreen, P., & Schütte, C. (2023). Modelling opinion dynamics under the impact of influencer and media strategies. Scientific Reports, 13(1), 1–17. https://doi.org/10.1038/s41598-023-46187-9
[16] Jebaselvi, C. A. E., Mohanraj, K., Thangamani, A., & Ramesh Kumar, M. (2023). The Impact of Social Media on the Evolution of Language and Communication Trends. Shanlax International Journal of English, 12(1), 41–44. https://doi.org/10.34293/english.v12i1.6725
[17] Kamarula, M. R. F., & Rochmawati, N. (2022). Perbandingan CNN dan Bi-LSTM pada Analisis Sentimen dan Emosi Masyarakat Indonesia Di Media Sosial Twitter Selama Pandemik Covid-19 yang Menggunakan Metode Word2vec. Journal of Informatics and Computer Science (JINACS), 04(02), 219–228. https://doi.org/10.26740/jinacs.v4n02.p219-228
[18] Kanont, K., Pingmuang, P., Simasathien, T., Wisnuwong, S., Wiwatsiripong, B., Poonpirome, K., Songkram, N., & Khlaisang, J. (2024). Generative-AI, a Learning Assistant? Factors Influencing Higher-Ed Students’ Technology Acceptance. Electronic Journal of E-Learning, 22(6 Special Issue), 18–33. https://doi.org/10.34190/ejel.22.6.3196
[19] Kurniati, F. (2023). Pemanfaatan Generatif AI dalam Pengawasan Pelayanan Publik. Https://Ombudsman.Go.Id/. https://ombudsman.go.id/artikel/r/pwkinternal--pemanfaatan-generatif-ai-dalam-pengawasan-pelayanan-publik
[20] Lee, S., & Kim, N. (2024). Public Perception of ChatGPT: Exploring How People Evaluate Its Risks and Benefits. Technology, Mind, and Behavior, 5(4), 1–29. https://doi.org/https://doi.org/10.1037/tmb0000140
[21] Leidiyana, H., Misriati, T., & Aryanti, R. (2024). Klasifikasi Sentimen Terhadap Kebijakan Tapera Menggunakan Komparasi Machine Learning dan SMOTE. Jurnal Komtika (Komputasi Dan Informatika), 8(2), 125–135.
[22] Lv, Z. (2023). Generative artificial intelligence in the metaverse era. Cognitive Robotics, 3(June), 208–217. https://doi.org/10.1016/j.cogr.2023.06.001
[23] Malewicz, M. (2025). Generative AI vs Social Media. Https://Michalmalewicz.Medium.Com/. https://michalmalewicz.medium.com/generative-ai-vs-social-media-f97e635638d9
[24] Mao, Y., Liu, Q., & Zhang, Y. (2024). Sentiment analysis methods, applications, and challenges: A systematic literature review. Journal of King Saud University - Computer and Information Sciences, 36(4), 1–16. https://doi.org/10.1016/j.jksuci.2024.102048
[25] Marcos, L., Babyn, P., & Alirezaie, J. (2024). Generative AI in Medical Imaging and Its Application in Low Dose Computed Tomography (CT) Image Denoising. In Applications of Generative AI (pp. 387–401). Springer, Cham. https://doi.org/https://doi.org/10.1007/978-3-031-46238-2_19
[26] Marreddy, M., & Mamidi, R. (2023). Learning sentiment analysis with word embeddings. In D. Das, A. K. Kolya, A. Basu, & S. Sarkar (Eds.), Computational Intelligence Applications for Text and Sentiment Data Analysis (pp. 141–161). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-32-390535-0.00011-2.
[27] McCarthy, S., Rowan, W., Mahony, C., & Vergne, A. (2023). The dark side of digitalization and social media platform governance: a citizen engagement study. Internet Research, 33(6), 2172–2204. https://doi.org/10.1108/INTR-03-2022-0142
[28] Miyazaki, K., Murayama, T., Uchiba, T., An, J., & Kwak, H. (2024). Public perception of generative AI on Twitter: an empirical study based on occupation and usage. EPJ Data Science, 13(1), 1–20. https://doi.org/10.1140/epjds/s13688-023-00445-y
[29] Mohamed, E. A. S., Osman, M. E., & Mohamed, B. A. (2024). The Impact of Artificial Intelligence on Social Media Content. Journal of Social Sciences, 20(1), 12–16. https://doi.org/10.3844/jssp.2024.12.16
[30] Moulaei, K., Yadegari, A., Baharestani, M., Farzanbakhsh, S., Sabet, B., & Reza Afrash, M. (2024). Generative artificial intelligence in healthcare: A scoping review on benefits, challenges and applications. International Journal of Medical Informatics, 188(May), 1–15. https://doi.org/10.1016/j.ijmedinf.2024.105474
[31] NoLimit Indonesia. (2024). Generative AI. In NoLimit - Online Media Technology Partner (Vol. 66, Issue 3). https://doi.org/10.1080/08956308.2023.2188861
[32] Noroozi, O., Soleimani, S., Farrokhnia, M., & Banihashem, S. K. (2024). Generative AI in Education: Pedagogical, Theoretical, and Methodological Perspectives. International Journal of Technology in Education, 7(3), 373–385. https://doi.org/10.46328/ijte.845
[33] Octavianto, A. W., Priyonggo, A., Setianto, Y. P., Wibowo, A., & Panji, Y. (2024). Framing The Future: Exploring AI Narratives in Indonesian Online Media Using Topic Modelling. Jurnal Komunikasi Indonesia, 13(2), 172–194. https://doi.org/10.7454/jkmi.v13i2.1245
[34] Olayinka, A. P., & Odunayo, S. (2024). The Role of Media Ethics in Shaping Public Perception: A Critical Analysis of Biased Reporting and Its Impact on Public Opinion. African Scholar Publications & Research International, 03(2), 31–51. https://www.researchgate.net/publication/378861453_The_Role_of_Media_Ethics_in_Shaping_Public_Perception_A_Critical_Analysis_of_Biased_Reporting_and_Its_Impact_on_Public_Opinion
[35] Portulans Institute. (2023). Understanding Public Perception: Generative AI and its Regulatory Considerations. https://networkreadinessindex.org/generative-ai-and-its-regulatory-considerations/
[36] Pratama, Y., Murdiansyah, D. T., & Lhaksmana, K. M. (2023). Analisis Sentimen Kendaraan Listrik Pada Media Sosial Twitter Menggunakan Algoritma Logistic Regression dan Principal Component Analysis. Jurnal Media Informatika Budidarma, 7(1), 529–535. https://doi.org/10.30865/mib.v7i1.5575
[37] Rahimli, N., & See-To, E. W. K. (2018). Exploring Open Innovation Technologies in Creative Industries: Systematic Review and Future Research Agenda. Advances in Intelligent Systems and Computing, 724(January 2018), 71–85. https://doi.org/10.1007/978-3-319-74980-8_7
[38] Rawas, S. (2024). AI: the future of humanity. Discover Artificial Intelligence, 4(25), 1–14. https://doi.org/10.1007/s44163-024-00118-3
[39] Romadhony, A., Faraby, S. Al, Rismala, R., Wisesti, U. N., & Arifianto, A. (2024). Sentiment Analysis on a Large Indonesian Product Review Dataset. Journal of Information Systems Engineering and Business Intelligence, 10(1), 167–178. https://doi.org/10.20473/jisebi.10.1.167-178
[40] Saberi, B., & Saad, S. (2017). Sentiment analysis or opinion mining: A review. International Journal on Advanced Science, Engineering and Information Technology, 7(5), 1660–1666. https://doi.org/10.18517/ijaseit.7.5.2137
[41] Saheb, T., Sidaoui, M., & Schmarzo, B. (2024). Convergence of artificial intelligence with social media: A bibliometric & qualitative analysis. Telematics and Informatics Reports, 14(1), 1–14. https://doi.org/10.1016/j.teler.2024.100146
[42] Schneider, J. (2024). Explainable Generative AI (GenXAI): A Survey, Conceptualization, and Research Agenda. In Artificial Intelligence Review (Vol. 57, Issue 11). Springer Netherlands. https://doi.org/10.1007/s10462-024-10916-x
[43] Siregar, F. W., Indrawati, H., & Hermita, N. (2024). Development of Economic Based Generative Learning to Facilitate Students’ Concept Understanding Ability. AL-ISHLAH: Jurnal Pendidikan, 16(1), 489–503. https://doi.org/10.35445/alishlah.v16i1.4140
[44] Wibowo, N. A., Wahyudi, E. J., Ismawati, L., Hermawan, A., & Wardana, L. W. (2024). Opportunities and Challenges of Digital Transformation for Creative Economy Development: Study Literature Review. International Journal of Business, Law, and Education, 5(1), 1369–1380. https://doi.org/10.56442/ijble.v5i1.569
[45] Wijanarko, R., Ratnawati, D. E., & Adikara, P. P. (2017). Analisis Sentimen Dampak Perkembangan Artificial Intelligence (AI) pada Media Sosial X/Twitter Menggunakan Metode Random Forest. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 1(1), 2548–2964. http://j-ptiik.ub.ac.id